A New Semi Analytical Method for Solving Some Non-Linear Infinite Boundary Value Problems in Physical Sciences

Authors

  • R. R. Subanya Research Centre and PG Department of Mathematics, The Madura College (affiliated to Madurai Kamaraj University), Madurai, Tamil Nadu, India
  • V. Ananthaswamy Research Centre and PG Department of Mathematics, The Madura College (affiliated to Madurai Kamaraj University), Madurai, Tamil Nadu, India https://orcid.org/0000-0002-2938-8745
  • S. Sivasankari Research Centre and PG Department of Mathematics, The Madura College (affiliated to Madurai Kamaraj University), Madurai, Tamil Nadu, India

DOI:

https://doi.org/10.26713/cma.v14i5.2136

Keywords:

MHD boundary layer flow, Casson fluid, Boundary value problem, Stretching/Shrinking sheet, Ananthaswamy-Sivasankari method (ASM), Homotopy analysis method (HAM)

Abstract

One new approximate analytical method called Ananthaswamy-Sivasankari method for third order boundary value problems is applied to acquire the approximate solutions to some physical science problems, particularly Magnetohydrodynamic (MHD) casson fluid flow and MHD boundary layer flow analytically. The numerical and approximate analytical solutions to these equations are then compared and the results demonstrate a very good agreement. The resulting approximate analytical expressions are provided in an explicit and closed form. The outcomes demonstrated that the new approximate analytical method is more practical and simple to understand. Furthermore, a graphic interlining of the obtained findings is provided.

Downloads

Download data is not yet available.

References

V. Ananthaswamy, C. Sumathi and M. Subha, V. Ananthaswamy, C. Sumathi and M. Subha, Mathematical analysis of variable viscosity fluid flow through a channel and homotopy analysis method, International Journal of Modern Mathematical Sciences 14(3) (2016), 296 – 316.

V. Ananthaswamy, M. Subha and A. M. Fathima, Approximate analytical expressions of non-linear boundary value problem for a boundary layer flow using the homotopy analysis method, Madridge Journal of Bioinformatics and Systems Biology 1(2) (2019), 34 – 39, DOI: 10.18689/mjbsb-1000107.

P. D. Ariel, Stagnation point flow with suction: an approximate solution, Journal of Applied Mechanics 61(4) (1994), 976 – 978, DOI: 10.1115/1.2901589.

K. Battacharyya, T. Hayat and A. Alsaedi, Analytic solution for magnetohydrodynamic boundary layer flow of Casson fluid over a stretching/shrinking sheet with wall mass transfer, Chinese Physics B 22(2) (2013), 024702, DOI: 10.1088/1674-1056/22/2/024702.

K. Bhattacharyya, Effects of heat source/sink on MHD flow and heat transfer over a shrinking sheet with mass suction, Chemical Engineering Research Bulletin 15(1) (2011), 12 – 17, DOI: 10.3329/cerb.v15i1.6524.

L. Crane, Flow past a stretching plate, Zeitschrift für angewandte Mathematik und Physik ZAMP 21 (1970), 645 – 647, DOI: 10.1007/BF01587695.

T. Fang and J. Zhang, Closed-form exact solutions of MHD viscous flow over a shrinking sheet, Communications in Nonlinear Science and Numerical Simulation 14(7) (2009), 2853 – 2857, DOI: 10.1016/j.cnsns.2008.10.005.

T. Fang and J. Zhang, Thermal boundary layers over a shrinking sheet: an analytical solution, Acta Mechanica 209 (2010), 325 – 343, DOI: 10.1007/s00707-009-0183-2.

T. Fang, J. Zhang and S. Yao, Viscous flow over an unsteady shrinking sheet with mass transfer, Chinese Physics Letters 26(1) (2009), 014703, DOI: 10.1088/0256-307X/26/1/014703.

T. Hayat, Z. Abbas and M. Sajid, On the analytic solution of magnetohydrodynamic flow of a second grade fluid over a shrinking sheet, Journal of Applied Mechanics 74(6) (2007), 1165 – 1171, DOI: 10.1115/1.2723820.

W. Ibrahim and O. D. Makinde, Magnetohydrodynamic stagnation point flow and heat transfer of casson nanofluid past a stretching sheet with slip and convective boundary condition, Journal of Aerospace Engineering 29(2) (2016), 04015037, DOI: 10.1061/(ASCE)AS.1943-5525.0000529.

A. K. Jhankal and M. Kumar, MHD boundary layer flow past a stretching plate with heat transfer, International Journal of Engineering Science 2(3) (2013), 9 – 13.

A. K. Jhankal and M. Kumar, MHD boundary layer flow past over a shrinking sheet with heat transfer and mass suction, International Journal of Computational and Applied Mathematics 12(2) (2017), 441 – 448.

W. A. Khan, O. D. Makinde and Z. H. Khan, Non-aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat, International Journal of Heat and Mass Transfer 96 (2016), 525 – 534, DOI: 10.1016/j.ijheatmasstransfer.2016.01.052.

T. K. Kravchenko and A. I. Yablonskii, A boundary value problem on a semi-infinite interval, Differential’nye Uraneniya 8(2) (1972), 2180 – 2186.

T. K. Kravchenko and A. I. Yablonskii, Solution of an infinite boundary value problem for third order equation, Differential’nye Uraneniya 1 (1965), 327.

R. B. Kudenatti, V. B. Awati and N. M. Bujurke, Approximate analytical solutions of a class of boundary layer equations over nonlinear stretching surface, Applied Mathematics and Computation 218(6) (2011), 2952 – 2959, DOI: 10.1016/j.amc.2011.08.049.

S. Liao, A new branch of solutions of boundary-layer flows over an impermeable stretched plate, International Journal of Heat and Mass Transfer 49(12) (2005), 2529 –2539, DOI: 10.1016/j.ijheatmasstransfer.2005.01.005.

E. Magyari and B. Keller, Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface, Journal of Physics D: Applied Physics 32(5) (1999), 577 – 585, DOI: 10.1088/0022-3727/32/5/012.

O. D. Makinde, Analysis of Sakiadis flow of nanofluids with viscous dissipation and Newtonian heating, Applied Mathematics and Mechanics 33 (2012), 1545 – 1554, DOI: 10.1007/s10483-012-1642-8.

O. D. Makinde and A. Aziz, Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition, International Journal of Thermal Sciences 50(7) (2011), 1326 – 1332, DOI: 10.1016/j.ijthermalsci.2011.02.019.

O. D. Makinde, Computational modelling of nanofluids flow over a convectively heated unsteady stretching sheet, Current Nanoscience 9(5) (2013), 673 – 678, DOI: 10.2174/15734137113099990068.

O. D. Makinde, F. Mabood, W. A. Khan and M. S. Tshehla, MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat, Journal of Molecular Liquids 219 (2016), 624 – 630, DOI: 10.1016/j.molliq.2016.03.078.

O. D. Makinde, V. B. Awati and N. M. Bujurke, Dirichlet series and closed-form exact solutions of MHD casson fluid flowover a permeable stretching/shrinking sheet, Palestine Journal of Mathematics 10(1) (2021), 109 – 119, URL: https://pjm.ppu.edu/sites/default/files/papers/PJM_NOV_2020_109_to_119.pdf.

M. Miklavcic and C. Y. Wang, Viscous flow due to a shrinking sheet, Quarterly of Applied Mathematics 64 (2006), 283 – 290, DOI: 10.1090/S0033-569X-06-01002-5.

M. Mustafa, T. Hayat, P. Ioan and A. Hendi, Stagnation-point flow and heat transfer of a casson fluid towards a stretching sheet, Zeitschrift für Naturforschung A 67(1-2) (2012), 70 – 76, DOI: 10.5560/zna.2011-0057.

S. Nadeem and M. Awais, Thin film flow of an unsteady shrinking sheet through porous medium with variable viscosity, Physics Letters A 372(30) (2008), 4965 – 4972, DOI: 10.1016/j.physleta.2008.05.048.

S. Nadeem, R. U. Haq and C. Lee, MHD flow of a Casson fluid over an exponentially shrinking sheet, Scientia Iranica 19(6) (2012), 1550 – 1553, DOI: 10.1016/j.scient.2012.10.021.

N. F. M. Noor, O. Abdulaziz and I. Hashim, MHD flow and heat transfer in a thin liquid film on an unsteady stretching sheet by the homotopy analysis method, International Journal for Numerical Methods in Fluids 63(3) (2010), 357 – 373, DOI: 10.1002/fld.2078.

N. F. M. Noor, S. A. Kechil and I. Hashim, Simple non-perturbative solution for MHD viscous flow due to a shrinking sheet, Communications in Nonlinear Science and Numerical Simulation 15(2) (2010), 144 – 148, DOI: 10.1016/j.cnsns.2009.03.034.

B. C. Sakiadis, Boundary-layer behavior on continuous solid surfaces: II. The boundary layer on a continuous flat surface, AIChE Journal 7(2) (1961), 221 – 225, DOI: 10.1002/aic.690070211.

F. K. Tsou, E. M. Sparrow and R. J. Goldstain, Flow and heat transfer in the boundary layer on a continuous moving surface, International Journal of Heat and Mass Transfer 10(2) (1967), 219 – 235, DOI: 10.1016/0017-9310(67)90100-7.

C. Y. Wang, Exact solutions of the steady-state Navier-Stokes equations, Annual Review of Fluid Mechanics 23(1) (1991), 159 – 177, DOI: 10.1146/annurev.fl.23.010191.001111.

C. Y. Wang, Stagnation flow towards a shrinking sheet, International Journal of Non-Linear Mechanics 43(5) (2008), 377 – 382, DOI: 10.1016/j.ijnonlinmec.2007.12.021.

Downloads

Published

31-12-2023
CITATION

How to Cite

Subanya, R. R., Ananthaswamy, . V., & Sivasankari, S. (2023). A New Semi Analytical Method for Solving Some Non-Linear Infinite Boundary Value Problems in Physical Sciences. Communications in Mathematics and Applications, 14(5), 1739–1757. https://doi.org/10.26713/cma.v14i5.2136

Issue

Section

Research Article