Maxwell Fluid Performance on Free Convective Non-Newtonian Nanofluid Flow Over a Cone in Presence of Magnetic Field, Heat and Mass Transfer

Authors

DOI:

https://doi.org/10.26713/cma.v14i2.2130

Keywords:

Maxwell fluid, Nanofluid, Free convection, Magnetic field, Heat transfer, Mass transfer

Abstract

In this research work, the numerical technique called Runge-Kutta method along with shooting technique is used to find the numerical solutions in the presence of magnetic field, heat and mass transfer on steady, two-dimensional, viscous, incompressible, electrically conducting, Maxwell fluid flow towards a vertical cone with the effects of Thermophoresis and Brownian motion effects. For this investigation, the basic governing equations for this fluid flow were transformed into non-linear ODEs using the similarity quantities. Graphical visualizations of velocity, temperature, and concentration distributions are shown with the effects of various engineering parameters. Also, the numerical values of engineering quantities Skin-friction, Nusselt number and Sherwood number coefficients are presented in tabular forms. Finally, for program code validation, the present numerical results are compared with the published results available in literature. In this current work, the velocity profiles are decreasing with increasing values of Maxwell fluid and Magnetic field parameters. With the increasing effects of Brownian motion and thermophoresis the temperature profiles are increase. The concentration profiles are increasing with increasing values of thermophoresis parameter and reverse effect is observed in case of Brownian motion effect. Also, the concentration profiles are decreasing with rising values of Lewis number.

Downloads

Download data is not yet available.

References

S. Ahmad, H. H. Coban, M. N. Khan, U. Khan, Q.-H. Shi, T. Muhammad, R. Chinram and S. Kadry, Computational analysis of the unsteady 3D chemically reacting MHD flow with the properties of temperature dependent transpose suspended Maxwell nanofluid, Case Studies in Thermal Engineering 26 (2021), 101169, DOI: 10.1016/j.csite.2021.101169.

D. Anilkumar and S. Roy, Unsteady mixed convection flow on a rotating cone in a rotating fluid, Applied Mathematics and Computation 155(2) (2004), 545 – 561, DOI: 10.1016/S0096-3003(03)00799-9.

R. M. Christensen, Theory of Viscoelasticity: An Introduction, Academic Press, London (1982), DOI: 10.1016/B978-0-12-174252-2.X5001-7.

Y.-M. Chu, M. I. Khan, N. B. Khan, S. Kadry, S. U. Khan, I. Tlili and M. K. Nayak, Significance of activation energy, bio-convection and magnetohydrodynamic in flow of third grade fluid (non-Newtonian) towards stretched surface: A Buongiorno model analysis, International Communications in Heat and Mass Transfer 118 (2020), 104893, DOI: 10.1016/j.icheatmasstransfer.2020.104893.

Y.-M. Chu, M. S. Hashmi, N. Khan, S. U. Khan, M. I. Khan, S. Kadry and Z. Abdelmalek, Thermophoretic particles deposition features in thermally developed flow of Maxwell fluid between two infinite stretched disks, Journal of Materials Research and Technology 9(6) (2020), 12889 – 12898, DOI: 10.1016/j.jmrt.2020.09.011.10.1016/j.jmrt.2020.09.011

Y.-M. Chu, S. Bilal and M. R. Hajizadeh, Hybrid ferrofluid along with MWCNT for augmentation of thermal behavior of fluid during natural convection in a cavity, Mathematical Methods in the Applied Sciences (2020), 1 – 12, DOI: 10.1002/mma.6937.

V. Dumitru and R. Abdul, Stokes flows of a Maxwell fluid with wall slip condition, Canadian Journal of Physics 89(10) (2011), 1061 – 1071, DOI: 10.1139/p11-099.

M. R. Eid and F. Mabood, Thermal analysis of higher-order chemical reactive viscoelastic nanofluids flow in porous media via stretching surface, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 235(22) (2021), 6099 – 6110, DOI: 10.1177/09544062211008481.

M. A. A. Hamad, Md. J. Uddin and A. I. Md. Ismail, Investigation of combined heat and mass transfer by Lie group analysis with variable diffusivity taking into account hydrodynamic slip and thermal convective boundary conditions, International Journal of Heat and Mass Transfer 55(4) (2012), 1355 – 1362, DOI: 10.1016/j.ijheatmasstransfer.2011.08.043.

M. Hamid, T. Zubair, M. Usman, Z. H. Khan and W. Wang, Natural convection effects on heat and mass transfer of slip flow of time-dependent Prandtl fluid, Journal of Computational Design and Engineering 6(4) (2019), 584 – 592, DOI: 10.1016/j.jcde.2019.03.004.

T. Hayat, S. Asghar, A. Tanveer and A. Alsaedi, Homogeneous–heterogeneous reactions in peristaltic flow of Prandtl fluid with thermal radiation, Journal of Molecular Liquids 240 (2017), 504 – 513, DOI: 10.1016/j.molliq.2017.05.058.

D. Khan, G. Ali, A. Khan, I. Khan, Y.-M. Chu and K. S. Nisar, A new idea of fractal-fractional derivative with power law kernel for free convection heat transfer in a channel flow between two static upright parallel plates, Computers, Materials & Continua 65(2) (2020), 1237 – 1251, DOI: 10.32604/cmc.2020.011492.

M. N. Khan, S. Nadeem, S. Ahmad and A. Saleem, Mathematical analysis of heat and mass transfer in a Maxwell fluid, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 235(20) (2021), 4967 – 4976, DOI: 10.1177/0954406220976.

N. M. Khan, Y.-M. Chu, M. I. Khan, S. Kadry and S. Qayyum, Modeling and dual solutions for magnetized mixed convective stagnation point flow of upper convected Maxwell fluid model with second-order velocity slip, Mathematical Methods in the Applied Sciences (2020), 1 – 21, DOI: 10.1002/mma.6824.

M. Madhu, N. Kishan and A. J. Chamkha, Unsteady flow of a Maxwell nanofluid over a stretching surface in the presence of magnetohydrodynamic and thermal radiation effects, Propulsion and Power Research 6(1) (2017), 31 – 40, DOI: 10.1016/j.jppr.2017.01.002.

S. Mukhopadhyay, Heat transfer analysis of the unsteady flow of a maxwell fluid over a stretching surface in the presence of a heat source/sink, Chinese Physics Letters 29(5) (2012), Article 054703, DOI: 10.1088/0256-307X/29/5/054703.

A. Mythreye, J. P. Pramod and K. S. Balamurugan, Chemical reaction on unsteady MHD convective heat and mass transfer past a semi-infinite vertical permeable moving plate with heat absorption, Procedia Engineering 127 (2015), 613 – 620, DOI: 10.1016/j.proeng.2015.11.352.

M. Nawaz, U. Arif and I. H. Qureshi, Impact of temperature dependent diffusion coefficients on heat and mass transport in viscoelastic liquid using generalized Fourier theory, Physica Scripta 94(11) (2019), 115206, DOI: 10.1088/1402-4896/ab1cec.

R. Rajesh and Y. R. Gowd, Heat and mass transfer analysis on MHD peristaltic Prandtl fluid model through a tapered channel with thermal radiation, Journal of Applied and Computational Mechanics 5(5) (2019), 951 – 963, DOI: 10.22055/JACM.2019.27998.1450.

G. K. Ramesh and B. J. Gireesha, Influence of heat source/sink on a Maxwell fluid over a stretching surface with convective boundary condition in the presence of nanoparticles, Ain Shams Engineering Journal 5(3) (2014), 991 – 998, DOI: 10.1016/j.asej.2014.04.003.

G. K. Ramesh, B. C. Prasannakumara, B. J. Gireesha, S. A. Shehzad and F. M. Abbasi, Three dimensional flow of Maxwell fluid with suspended nanoparticles past a bidirectional porous stretching surface with thermal radiation, Thermal Science and Engineering Progress 1 (2017), 6 – 14, DOI: 10.1016/j.tsep.2017.02.006.

R. Ravindran, M. Ganapathirao and I. Pop, Effects of chemical reaction and heat generation/absorption on unsteady mixed convection MHD flow over a vertical cone with non-uniform slot mass transfer, International Journal of Heat and Mass Transfer 73 (2014), 743 – 751, DOI: 10.1016/j.ijheatmasstransfer.2014.02.053.

T. Sajid, M. Sagheer, S. Hussain and M. Bilal, Darcy-Forchheimer flow of Maxwell nanofluid flow with nonlinear thermal radiation and activation energy, AIP Advances 8(3) (2018), Article 035102, DOI: 10.1063/1.5019218.

M. Sathyanarayana and T. R. Goud, Characteristics of MHD nanofluid flow towards a vertical cone under convective cross-diffusion effects through numerical solutions, Heat Transfer 52(2) (2022), 1734 – 1753, DOI: 10.1002/htj.22761.

Y.-Q. Song, H. Waqas, K. Al-Khaled, U. Farooq, S. U. Khan, M. I. Khan, Y.-M. Chu and S. Qayyum, Bioconvection analysis for Sutterby nanofluid over an axially stretched cylinder with melting heat transfer and variable thermal features: A Marangoni and solutal model, Alexandria Engineering Journal 60(5) (2021), 4663 – 4675, DOI: 10.1016/j.aej.2021.03.056.

J. Zhao, L. Zheng, X. Zhang and F. Liu, Convection heat and mass transfer of fractional MHD Maxwell fluid in a porous medium with Soret and Dufour effects, International Journal of Heat and Mass Transfer 103 (2016), 203 – 210, DOI: 10.1016/j.ijheatmasstransfer.2016.07.057.

J. Zhao, L. Zheng, X. Zhang and F. Liu, Unsteady natural convection boundary layer heat transfer of fractional Maxwell viscoelastic fluid over a vertical plate, International Journal of Heat and Mass Transfer 97 (2016), 760 – 766, DOI: 10.1016/j.ijheatmasstransfer.2016.02.059.

T.-H. Zhao, M. I. Khan and Y.-M. Chu, Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks, Mathematical Methods in the Applied Sciences 46(3) (2021), 3012 – 3030, DOI: 10.1002/mma.7310.

T. Zhao, M. R. Khan, Y. Chu, A. Issakhov, R. Ali and S. Khan, Entropy generation approach with heat and mass transfer in magnetohydrodynamic stagnation point flow of a tangent hyperbolic nanofluid, Applied Mathematics and Mechanics 42 (2021), 1205 – 1218, DOI: 10.1007/s10483-021-2759-5.

L. Zheng, F. Zhao and X. Zhang, Exact solutions for generalized Maxwell fluid flow due to oscillatory and constantly accelerating plate, Nonlinear Analysis: Real World Applications 11(5) (2010), 3744 – 3751, DOI: 10.1016/j.nonrwa.2010.02.004.

Downloads

Published

18-09-2023
CITATION

How to Cite

Sathyanarayana, M., & Goud, T. R. (2023). Maxwell Fluid Performance on Free Convective Non-Newtonian Nanofluid Flow Over a Cone in Presence of Magnetic Field, Heat and Mass Transfer. Communications in Mathematics and Applications, 14(2), 1019–1037. https://doi.org/10.26713/cma.v14i2.2130

Issue

Section

Research Article