A Computational Analysis of the Soret and Dufour Effects on a Rotating Hybrid Nanofluid

Authors

DOI:

https://doi.org/10.26713/cma.v14i2.2124

Keywords:

Hybrid nanofluid, Rotating sheet, Lobatto III A technique, Soret, Dufour

Abstract

This paper shows the impact of the Dufour and Soret numbers on a hybrid nanofluid (HNF) in a boundary layer area across a spinning sheet. The collection of flow governing (PDEs) partial differential equations was turned into a system of (ODEs) ordinary differential equations, which are then solved utilising BVP4C code in MATLAB. The impact of the flow governing parameters on the flow properties were analysed and presented graphically. The Soret factor influences the thermal efficiency at the surface, while the Dufour effect reduces the mass transfer at the surface.

Downloads

Download data is not yet available.

References

H. M. Ali, Hybrid Nanofluids for Convection Heat Transfer, Elsevier/Academic Press (2020), DOI: 10.1016/C2018-0-04602-2.

H. M. Ali, H. Ali, H. Liaquat, H. T. B. Maqsood and M. A. Nadir, Experimental investigation of convective heat transfer augmentation for car radiator using ZnO–water nanofluids, Energy 84 (2015), 317 – 324, DOI: 10.1016/j.energy.2015.02.103.

A. I. Alsabery, H. T. Kadhim, M. A. Ismael, I. Hashim and A. J. Chamkha, Impacts of amplitude and heat source on natural convection of hybrid nanofluids into a wavy enclosure via heatline approach, Waves in Random and Complex Media 33(4) (2023), 1060 – 1084, DOI: 10.1080/17455030.2021.1896819.

N. S. Anuar, N. Bachok and I. Pop, Radiative hybrid nanofluid flow past a rotating permeable stretching/shrinking sheet, International Journal of Numerical Methods for Heat & Fluid Flow 31(3) (2020), 914 – 932, DOI: 10.1108/HFF-03-2020-0149.

W. Arshad and H. M. Ali, Experimental investigation of heat transfer and pressure drop in a straight minichannel heat sink using TiO2 nanofluid, International Journal of Heat and Mass Transfer 110 (2017), 248 – 256, DOI: 10.1016/j.ijheatmasstransfer.2017.03.032.

M. Ataei, F. S. Moghanlou, S. Noorzadeh, M. Vajdi and M. S. Asl, Heat transfer and flow characteristics of hybrid Al2O3/TiO2–water nanofluid in a minichannel heat sink, Heat and Mass Transfer 56 (2020), 2757 – 2767, DOI: 10.1007/s00231-020-02896-9.

A. Aziz, T. Muhammad, A. Alsaedi and T. Hayat, An optimal study for 3D rotating flow of Oldroyd-B nanofluid with convectively heated surface, Journal of the Brazilian Society of Mechanical Sciences and Engineering 41 (2019), Article number: 236, DOI: 10.1007/s40430-019-1733-8.

N. Bachok, A. Ishak and I. Pop, Boundary layer stagnation-point flow and heat transfer over an exponentially stretching/shrinking sheet in a nanofluid, International Journal of Heat and Mass Transfer 55(25–26) (2012), 8122 – 8128, DOI: 10.1016/j.ijheatmasstransfer.2012.08.051.

J. Buongiorno, Convective transport in nanofluids, ASME Journal of Heat and Mass Transfer 128(3) (2006), 240 – 250, DOI: 10.1115/1.2150834.

S. U. S. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, ASME International Mechanical Engineering Congress & Exposition, November 12-17, 1995, San Francisco, CA, URL: https://ecotert.com/pdf/196525_From_unt-edu.pdf.

K. Ezhil, S. K. Thavada and S. B. Ramakrishna, MHD slip flow and heat transfer of Cu-Fe3O4/ethylene glycol-based hybrid nanofluid over a stretching surface, Biointerface Research in Applied Chemistry 11(4) (2021), 11956 – 11968, DOI: 10.33263/BRIAC114.1195611968.

B. Fallah, S. Dinarvand, M. E. Yazdi, M. N. Rostami and I. Pop, MHD flow and heat transfer of SiC–TiO2/DO hybrid nanofluid due to a permeable spinning disk by a novel algorithm, Journal of Applied and Computational Mechanics 5(5) (2019), 976 – 988, DOI: 10.22055/JACM.2019.27997.1449.

M. Ghalambaz, M. Sabour, I. Pop and D. Wen, Free convection heat transfer of MgO-MWCNTs/EG hybrid nanofluid in a porous complex shaped cavity with MHD and thermal radiation effects, International Journal of Numerical Methods for Heat & Fluid Flow 29(11) (2019), 4349 – 4376, DOI: 10.1108/HFF-04-2019-0339.

B. J. Gireesha, G. Sowmya, M. I. Khan and H. F. Öztop, Flow of hybrid nanofluid across a permeable longitudinal moving fin along with thermal radiation and natural convection, Computer Methods and Programs in Biomedicine 185 (2020), 105166, DOI: 10.1016/j.cmpb.2019.105166.

T. Gul, M. Bilal, M. Shuaib, S. Mukhtar and P. Thounthong, Thin film flow of the water-based carbon nanotubes hybrid nanofluid under the magnetic effects, Heat Transfer 49(6) (2020), 3211 – 3227, DOI: 10.1002/HTJ.21770.

T. Hayat, A. Aziz, T. Muhammad, A. Alsaedi and M. Mustafa, On magnetohydrodynamic flow of second grade nanofluid over a convectively heated nonlinear stretching surface, Advanced Powder Technology 27(5) (2016), 1992 – 2004, DOI: 10.1016/J.APT.2016.07.002.

T. Hayat, T. Nasir, M. I. Khan and A. Alsaedi, Non-Darcy flow of water-based single (SWCNTs) and multiple (MWCNTs) walls carbon nanotubes with multiple slip conditions due to rotating disk, Results in Physics 9 (2018), 390 – 399, DOI: 10.1016/j.rinp.2018.02.044.

W. Jamshed, S. R. Mishra, P. K. Pattnaik, K. S. Nisar, S. S. U. Devi, M. Prakash, F. Shahzad, M. Hussain and V. Vijayakumar, Features of entropy optimization on viscous second grade nanofluid streamed with thermal radiation: A Tiwari and Das model, Case Studies in Thermal Engineering 27 (2021), 101291, DOI: 10.1016/J.CSITE.2021.101291.

A. U. Khan, S. Saleem, S. Nadeem and A. A. Alderremy, Analysis of unsteady non-axisymmetric Homann stagnation point flow of nanofluid and possible existence of multiple solutions, Physica A: Statistical Mechanics and its Applications 554 (2020), 123920, DOI: 10.1016/j.physa.2019.123920.

M. Khan, T. Salahuddin, M. M. Yousaf, F. Khan and A. Hussain, Variable diffusion and conductivity change in 3D rotating Williamson fluid flow along with magnetic field and activation energy, International Journal of Numerical Methods for Heat & Fluid Flow 30(5) (2020), 2467 – 2484, DOI: 10.1108/HFF-02-2019-0145.

K. G. Kumar, G. K. Ramesh, S. A. Shehzad and F. M. Abbasi, Three-dimensional (3D) rotating flow of selenium nanoparticles past an exponentially stretchable surface due to solar energy radiation, Journal of Nanofluids 8(5) (2019), 1034 – 1040, DOI: 10.1166/jon.2019.1662.

K. G. Kumar, M. G. Reddy, P. V. Kumari, A. Aldalbahi, M. Rahimi-Gorji and M. Rahaman, Application of different hybrid nanofluids in convective heat transport of Carreau fluid, Chaos, Solitons & Fractals 141 (2020), 110350, DOI: 10.1016/j.chaos.2020.110350.

K. G. Kumar, M. G. Reddy, S. A. Shehzad and F. M. Abbasi, A least square study on flow and radiative heat transfer of a hybrid nanofluid in a moving frame by considering a spherically-shaped particle, Revista Mexicana de Fısica ´ 66(2), 162 – 170, DOI: 10.31349/RevMexFis.66.162.

B. A. Kuttan, S. Manjunatha and S. Jayanthi, Performance of four different nanoparticles in boundary layer flow over a stretching sheet in porous medium driven by buoyancy force, International Journal of Applied Mechanics and Engineering 25(2) (2020), 1 – 10, DOI: 10.2478/ijame-2020-0016.

L. A. Lund, Z. Omar, S. Dero, D. Baleanu and I. Khan, Rotating 3D flow of hybrid nanofluid on exponentially shrinking sheet: Symmetrical solution and duality, Symmetry 12(10) (2020), 1637, DOI: 10.3390/sym12101637.

F. Mabood and A. T. Akinshilo, Stability analysis and heat transfer of hybrid Cu-Al2O3/H2O nanofluids transport over a stretching surface, International Communications in Heat and Mass Transfer 123 (2021), 105215, DOI: 10.1016/j.icheatmasstransfer.2021.105215.

O. D. Makinde, F. Mabood and M. S. Ibrahim, Chemically reacting on MHD boundary-layer flow of nanofluids over a non-linear stretching sheet with heat source/sink and thermal radiation, Thermal Science 22(1) (2018) (Part B), 495 – 506, DOI: 10.2298/TSCI151003284M.

S. A. M. Mehryan, F. M. Kashkooli, M. Ghalambaz and A. J. Chamkha, Free convection of hybrid Al2O3-Cu water nanofluid in a differentially heated porous cavity, Advanced Powder Technology 28(9) (2017), 2295 – 2305, DOI: 10.1016/j.apt.2017.06.011.

M. Mustafa, T. Hayat and A. Alsaedi, Rotating flow of Oldroyd-B fluid over stretchable surface with Cattaneo-Christov heat flux: Analytic solutions, International Journal of Numerical Methods for Heat & Fluid Flow 27(10) (2017), 2207 – 2222, DOI: 10.1108/HFF-08-2016-0323.

M. K. Nayak, S. Shaw, V. S. Pandey and A. J. Chamkha, Combined effects of slip and convective boundary condition on MHD 3D stretched flow of nanofluid through porous media inspired by non-linear thermal radiation, Indian Journal of Physics 92 (2018), 1017 – 1028, DOI: 10.1007/s12648-018-1188-2.

K. S. Nisar, U. Khan, A. Zaib, I. Khan and D. Baleanu, Exploration of aluminum and titanium alloys in the stream-wise and secondary flow directions comprising the significant impacts of magnetohydrodynamic and hybrid nanofluid, Crystals 10(8) (2020), 679, DOI: 10.3390/cryst10080679.

C. Ouyang, R. Akhtar, M. A. Z. Raja, M. T. Sabir, M. Awais and M. Shoaib, Numerical treatment with Lobatto IIIA technique for radiative flow of MHD hybrid nanofluid (Al2O3–Cu/H2O) over a convectively heated stretchable rotating disk with velocity slip effects, AIP Advances 10 (2020), 055122, DOI: 10.1063/1.5143937.

H. F. Oztop and E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, International Journal of Heat and Fluid Flow 29(5) (2008), 1326 – 1336, DOI: 10.1016/j.ijheatfluidflow.2008.04.009.

A. Prathiba and V. L. Akavaram, Numerical investigation of a convective hybrid nanofluids around a rotating sheet, Heat Transfer 51(4) (2022), 3353 – 3372, DOI: 10.1002/htj.22454.

C. Ramreddy, P. V. S. N. Murthy, A. J. Chamkha and A. M. Rashad, Soret effect on mixed convection flow in a nanofluid under convective boundary condition, International Journal of Heat and Mass Transfer 64 (2013), 384 – 392, DOI: 10.1016/j.ijheatmasstransfer.2013.04.032.

P. Rana, N. Srikantha, T. Muhammad and G. Gupta, Computational study of three-dimensional flow and heat transfer of 25 nm Cu–H2O nanoliquid with convective thermal condition and radiative heat flux using modified Buongiorno model, Case Studies in Thermal Engineering 27 (2021), 101340, DOI: 10.1016/j.csite.2021.101340.

G. Rasool, A. Shafiq and D. Baleanu, Consequences of Soret-Dufour effects, thermal radiation, and binary chemical reaction on Darcy Forchheimer flow of nanofluids, Symmetry 12(9) (2020), 1421, DOI: 10.3390/SYM12091421.

M. G. Reddy, M. V. V. N. L. Sudharani and K. G. Kumar, An analysis of dusty slip flow through a single-/multi-wall carbon nanotube, Continuum Mechanics and Thermodynamics 32 (2020), 971 – 985, DOI: 10.1007/s00161-019-00860-5.

K. Sadiq, F. Jarad, I. Siddique and B. Ali, Soret and radiation effects on mixture of ethylene glycol-water (50%-50%) based maxwell nanofluid flow in an upright channel, Complexity 2021 (2021), Article ID 5927070, 12 pages, DOI: 10.1155/2021/5927070.

M. R. Saffarian, M. Moravej and M. H. Doranehgard, Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid, Renewable Energy 146 (2020), 2316 – 2329, DOI: 10.1016/j.renene.2019.08.081.

H. Sardar, L. Ahmad, M. Khan and A. S. Alshomrani, Investigation of mixed convection flow of Carreau nanofluid over a wedge in the presence of Soret and Dufour effects, International Journal of Heat and Mass Transfer 137 (2019), 809 – 822, DOI: 10.1016/j.ijheatmasstransfer.2019.03.132.

Z. Shah, E. Bonyah, S. Islam and T. Gul, Impact of thermal radiation on electrical MHD rotating flow of Carbon nanotubes over a stretching sheet, AIP Advances 9 (2019), 015115, DOI: 10.1063/1.5048078.

N. A. Shah, I. L. Animasaun, J. D. Chung, A. Wakif, F I. Alao and C. S. K. Raju, Significance of nanoparticle’s radius, heat flux due to concentration gradient, and mass flux due to temperature gradient: The case of Water conveying copper nanoparticles, Scientific Reports 11 (2021), Article number: 1882, DOI: 10.1038/s41598-021-81417-y.

N. Shaheen, M. Ramzan, A. Alshehri, Z. Shah and P. Kumam, Soret-Dufour impact on a three-dimensional Casson nanofluid flow with dust particles and variable characteristics in a permeable media, Scientific Reports 11 (2021), Article number: 14513, DOI: 10.1038/s41598-021-93797-2.

S. A. Shehzad, M. G. Reddy, P. Vijayakumari and I. Tlili, Behavior of ferromagnetic Fe2SO4 and titanium alloy Ti6Al4v nanoparticles in micropolar fluid flow, International Communications in Heat and Mass Transfer 117 (2020), 104769, DOI: 10.1016/j.icheatmasstransfer.2020.104769.

M. Shoaib, M. A. Z. Raja, M. T. Sabir, M. Awais, S. Islam, Z. Shah and P. Kumam, Numerical analysis of 3-D MHD hybrid nanofluid over a rotational disk in presence of thermal radiation with Joule heating and viscous dissipation effects using Lobatto IIIA technique, Alexandria Engineering Journal 60(4) (2021), 3605 – 3619, DOI: 10.1016/j.aej.2021.02.015.

A. Shojaei, A. J. Amiri, S. S. Ardahaie, K. Hosseinzadeh and D. D. Ganji, Hydrothermal analysis of Non-Newtonian second grade fluid flow on radiative stretching cylinder with Soret and Dufour effects, Case Studies in Thermal Engineering 13 (2019), 100384, DOI: 10.1016/J.CSITE.2018.100384.

M. Turkyilmazoglu, Effects of uniform radial electric field on the MHD heat and fluid flow due to a rotating disk, International Journal of Engineering Science 51 (2012), 233 – 240, DOI: 10.1016/j.ijengsci.2011.09.011.

I. Uddin, R. Akhtar, Z. Zhiyu, S. Islam, M. Shoaib and M. A. Z. Raja, Numerical treatment for darcy-forchheimer flow of sisko nanomaterial with nonlinear thermal radiation by Lobatto IIIA technique, Mathematical Problems in Engineering 2019 (2019), Article ID 8974572, 15 pages, DOI: 10.1155/2019/8974572.

I. Waini, A. Ishak and I. Pop, Dufour and Soret effects on Al2O3-water nanofluid flow over a moving thin needle: Tiwari and Das model, International Journal of Numerical Methods for Heat & Fluid Flow 31(3) (2021), 766 – 782, DOI: 10.1108/HFF-03-2020-0177.

C. Y. Wang, Stretching a surface in a rotating fluid, Zeitschrift für angewandte Mathematik und Physik ZAMP 39(2) (1988), 177 – 185, DOI: 10.1007/BF00945764.

H. Waqas, U. Farooq, M. Alghamdi, T. Muhammad and A. S. Alshomrani, On the magnetized 3D flow of hybrid nanofluids utilizing nonlinear radiative heat transfer, Physica Scripta 96(9) (2021), 95202, DOI: 10.1088/1402-4896/ac0272.

Downloads

Published

18-09-2023
CITATION

How to Cite

Prathiba, A., Lakshmi, V. A., & Ramesh, V. (2023). A Computational Analysis of the Soret and Dufour Effects on a Rotating Hybrid Nanofluid. Communications in Mathematics and Applications, 14(2), 881–899. https://doi.org/10.26713/cma.v14i2.2124

Issue

Section

Research Article