$A$-transform of Wavelet Frames

Authors

  • F. A. Shah Department of Mathematics, University of Kashmir, South Campus, Anantnag-192 101, Jammu and Kashmir
  • N. A. Sheikh Departmentof Mathematics, National Institute of Technology, Srinagar 190 006, Jammu and Kashmir

DOI:

https://doi.org/10.26713/cma.v3i3.211

Keywords:

$A$-transform, Wavelet frame, Walsh function, Walsh-Fourier transform

Abstract

In this paper, we introduced the concept of $A$-transform $A = (a_{p,q,j,k})$ and study the action of $A$ on $f\in L^2(\mathbb{R}^+)$ and on its wavelet coefficients. Further, we also establish the Parseval frame condition for $A$-transform of $f \in L^2(\mathbb{R}^+)$ whose wavelet series expansion is known.

Downloads

Download data is not yet available.

References

P.G. Casazza and O. Christensen, Weyl-Heisenberg frames for subspaces of $L^2(mathbb{R})$, Proc. Amer. Math. Soc. 129 (2001), 145–154.

O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003.

C.K. Chui and X.L. Shi, Inequalities of Littlewood-Paley type for frames and wavelets, SIAM J. Math. Anal. 24 (1993), 263–277.

C.K. Chui and X.L. Shi, Orhtonormal wavelets and tight frames with arbitrary real dilations, Appl. Comput. Harmonic Anal. 9 (2000), 243–264.

S. Dahlke, Multiresolution analysis and wavelets on locally compact Abelian groups, in Wavelets, Images and Surface Fitting, P.J. Laurent, A. Le Mehaute and L.L. Schumaker (editors), A.K.Peters,Wellesley, (1994), 141–156.

I. Daubechies, Ten Lecture on Wavelets, CBMS-NSF Regional Conferences in Applied Mathematics (SIAM, Philadelphia, 1992).

I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27(5) (1986), 1271–1283.

R.J. Duffin and A.C. Shaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341–366.

Yu.A. Farkov, Orthogonal wavelets with compact support on locally compact Abelian groups, Izv. Math. 69(3) (2005), 623–650.

Yu.A. Farkov, On wavelets related toWalsh series, J. Approx. Theory, 161(1) (2009), 259–279.

B.I. Golubov, A.V. Efimov and V.A. Skvortsov, Walsh Series and Transforms: Theory and Applications, Kluwer, Dordrecht, 1991.

J. Kovacevic and A. Chebira, Life beyond bases: the advent of frames-I, IEEE Sig. Process. Magz. 24(4) (2007), 86–104.

J. Kovacevic and A. Chebira, Life beyond bases: the advent of frames-I, IEEE Sig. Process. Magz. 24(5) (2007), 115–125.

W.C. Lang, Orthogonal wavelets on the Cantor dyadic group, SIAM J. Math. Anal. 27 (1996), 305–312.

W.C. Lang, Fractal multiwavelets related to the Cantor dyadic group, Int. J. Math. Math. Sci. 21 (1998), 307–317.

W.C. Lang, Wavelet analysis on the Cantor dyadic group, Houston J. Math. 24 (1998), 533–544.

S.G. Mallat, Multiresolution approximations and wavelet orthonormal bases of $L^2(mathbb{R})$, Trans. Amer. Math. Soc. 315 (1989), 69–87.

F. Móricz and B.E. Rhoades, Comparison theorems for double summability methods, Publ. Math. Debrecen, 36 (1989), 207–220.

V.Yu. Protasov and Yu.A. Farkov, Dyadic wavelets and refinable functions on a half-line, Sb. Math. 197(10) (2006), 1529–1558.

F. Schipp, W.R. Wade and P. Simon, Walsh Series: An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol ” New York, 1990.

F.A. Shah, Construction of wavelet packets on $p$-adic field, Int. J. Wavelets Multiresolut. Inf. Process. 7(5) (2009), 553–565.

F.A. Shah and L. Debnath, Dyadic wavelet frames on a half-line using the Walsh-Fourier transform, Integ.Transf. Spec. Funct. 22(7) (2011), 477–486.

F.A. Shah and L. Debnath, $p$-Wavelet frame packets on a half-line using the Walsh-Fourier transform, Integ. Transf. Spec. Funct. 22(12) (2011), 907–917.

N.A. Sheikh and M. Mursaleen, Infinite matrices, wavelets coefficients and frames, Int. J. Mathematics and Mathematical Sciences 67 (2004), 3695–3702.

X.L. Shi and F. Chen, Necessary condition and sufficient condition for affine frames, Science in China (Series A) 48 (2005), 1369–1378.

Downloads

CITATION

How to Cite

Shah, F. A., & Sheikh, N. A. (2012). $A$-transform of Wavelet Frames. Communications in Mathematics and Applications, 3(3), 273–282. https://doi.org/10.26713/cma.v3i3.211

Issue

Section

Research Article