A Study on I-localized Sequences in S-metric Spaces

Authors

DOI:

https://doi.org/10.26713/cma.v14i1.2056

Keywords:

Ideal, S-metric space, I-locator, I-localized sequence, I*-localized sequence, I-barrier

Abstract

In this paper, we study the notion of I-localized and I-localized sequences in S-metric spaces. Also, we investigate some properties related to I-localized and I-Cauchy sequences and give the idea of I-barrier of a sequence in the same space. Finally, we use this idea for an I-localized sequence to be I-Cauchy when the ideal I satisfies the condition (AP).

Downloads

Author Biography

Amar Kumar Banerjee, Department of Mathematics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India

 

 

References

A. K. Banerjee and A. Banerjee, A study on I-Cauchy sequences and I-divergence in S-metric spaces, Malaya Journal of Matematik 6(2) (2018), 326 – 330, DOI: 10.26637/MJM0602/0004.

A. K. Banerjee and R. Mondal, Rough convergence of sequences in a cone metric space, The Journal of Analysis 27(4) (2019), 1179 – 1188, DOI: 10.1007/s41478-019-00168-2.

P. Das and B. K. Lahiri, I and I*-Convergence of nets, Real Analysis Exchange 33(2) (2007-2008), 431 – 442, URL: https://projecteuclid.org/journals/real-analysis-exchange/volume-33/issue-2/I-and-I---Convergence-of-Nets/rae/1229619420.full.

P. Das, P. Kostyrko, W. Wilczynski and P. Malik, I and I*-convergence of double sequences, Mathematica Slovaca, 58(5) (2008), 605-620, DOI: 10.2478/s12175-008-0096-x.

H. Fast, Sur la convergence statistique, Colloquium Mathematicum 2(3-4) (1951), 241 – 244, URL: https://eudml.org/doc/209960.

C. Granados, New notions of triple sequences on ideal spaces in metric spaces, Advances in the Theory of Nonlinear Analysis and its Application 5(3) (2021), 363 – 368, DOI: 10.31197/atnaa.846717.

C. Granados and J. Bermudez, I2-localized double sequences in metric spaces, Advances in Mathematics: Scientific Journal 10(6) (2021), 2877 – 2885, DOI: 10.37418/amsj.10.6.14.

M. Gürdal, N. Sari and E. Savas, A-statistically localized sequences in n-normed spaces, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69(2) (2020), 1484 – 1497, DOI: 10.31801/cfsuasmas.704446.

L. N. Krivonosov, Localized sequences in metric spaces, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika 1974(4) (1974), 45 – 54, URL: https://www.mathnet.ru/php/getFT.phtml?jrnid=ivm&paperid=6562&what=fullt&option_lang=eng.

P. Kostyrko, T. Šalát and W. Wilczynski, I-convergence, Real Analysis Exchange 26(2) (2000-2001), 669 – 685, DOI: 10.2307/44154069.

A. A. Nabiev, E. Sava¸s and M. Gürdal, I-Localized sequences in metric spaces, Facta Universitatis Series: Mathematics and Informatics 35(2) (2020), 459 – 469, DOI: 10.22190/FUMI2002459N.

I. J. Schoenberg, The integrability of certain functions and related summability methods, The American Mathematical Monthly 66(5) (1959), 361 – 375, DOI: 10.1080/00029890.1959.11989303.

S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Matematicki Vesnik 64(3) (2012), 258 – 266, URL: https://www.emis.de/journals/MV/123/9.html.

H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloquium Mathematicum 2(1) (1951), 73 – 74.

U. Yamanci, A. A. Nabiev and M. Gürdal, Statistically localized sequences in 2-normed spaces, Honam Mathematical Journal 42(1) (2020), 161-173, DOI: 10.5831/HMJ.2020.42.1.161.

U. Yamanci, E. Savas and M. Gürdal, I-Localized sequence in two normed spaces, Malaysian Journal of Mathematical Sciences 14(3) (2020), 491 – 503, URL: https://mjms.upm.edu.my/fullpaper/2020-September-14-3/Yamanci,%20U.-491-503.pdf.

Downloads

Published

09-05-2023
CITATION

How to Cite

Banerjee, A. K., & Hossain, N. (2023). A Study on I-localized Sequences in S-metric Spaces. Communications in Mathematics and Applications, 14(1), 49–58. https://doi.org/10.26713/cma.v14i1.2056

Issue

Section

Research Article