Numerical Simulation for a Differential Difference Equation With an Interior Layer

Authors

DOI:

https://doi.org/10.26713/cma.v14i1.2047

Keywords:

Differential-difference equation, Numerical integration, Layer behaviour, Convergence

Abstract

This paper addresses the solution of a differential-difference type equation having an interior layer behaviour. An approach is suggested to solve this equation using a numerical integration scheme and linear interpolation. Taylor expansions are utilized to handle the shift arguments. In order to solve the discretized equation, the tridiagonal solver is applied. The approach is analyzed for convergence. Numerical examples are demonstrated to validate the scheme. Maximum errors in the solution, in contrast to the other methods, are organized to explain the approach. The layer profile in the solutions of the examples is illustrated in graphs.

Downloads

Download data is not yet available.

References

C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill Book Company, New York (1978), URL: http://www.lmm.jussieu.fr/~lagree/COURS/M2MHP/Bender-Orszag-chap9-11.pdf.

M. Bestehorn and E. V. Grigorieva, Formation and propagation of localized states in extended systems, Annalen der Physik 516(7-8) (2004), 423 – 431, DOI: 10.1002/andp.200451607-806.

E. P. Doolan, J. J. H. Miller and W. H. A. Schilders, Uniform Numerical Methods for Problems with Initial and Boundary Layers, Boole Press, Dublin (1980).

R. D. Driver, Ordinary and Delay Differential Equations, Applied Mathematical Sciences, Vol. 20, Springer, New York (1977), DOI: 10.1007/978-1-4684-9467-9.

L. E. El’sgol’ts and S. B. Norkin, Introduction to the Theory and Application of Differential Equations with Deviating Arguments, Mathematics in Science and Engineering Book series, Vol. 105, Academic Press (1973), URL: https://www.sciencedirect.com/bookseries/mathematics-in-science-and-engineering/vol/105/suppl/C.

M. K. Kadalbajoo and K. K. Sharma, An exponentially fitted finite difference scheme for solving boundary-value problems for singularly-perturbed differential-difference equations: small shifts of mixed type with layer behavior, Journal of Computational Analysis and Applications 8(2) (2006), 151 – 171, URL: http://www.eudoxuspress.com/JoCAAAv8-06.pdf.

M. K. Kadalbajoo and K. K. Sharma, Numerical treatment of a mathematical model arising from a model of neuronal variability, Journal of Mathematical Analysis and Applications 307(2) (2005), 606 – 627, DOI: 10.1016/j.jmaa.2005.02.014.

R. B. Kellogg and A. Tsan, Analysis of some difference approximations for a singular perturbation problem without turning points, Mathematics of Computation 32 (1978), 1025 – 1039, DOI: 10.1090/S0025-5718-1978-0483484-9.

P. Kokotovic, H. K. Khalil and J. O’Reilly, ´ Singular Perturbation Methods in Control: Analysis and Design, Classics in Applied Mathematics Book Series, Academic Press, New York (1986), DOI: 10.1137/1.9781611971118.

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, New York (1993).

C. G. Lange and R. M. Miura, Singular perturbation analysis of boundary-value problems for differential-difference equations III. Turning point problems, SIAM Journal on Applied Mathematics 45 (1985), 708 – 734, URL: https://www.jstor.org/stable/2101624.

C. G. Lange and R. M. Miura, Singular perturbation analysis of boundary-value problems for differential-difference equations V. Small shifts with layer behavior, SIAM Journal on Applied Mathematics 54 (1994), 249 – 272, URL: https://www.jstor.org/stable/2102177.

M. Wazewska-Czyzewska and A. Lasota, Mathematical problems of the dynamics of the red blood cells, Matematyka Stosowana-Matematyka dla Społecze´nstwa (Mathematica Applicanda) 4(6) (1976), 23 – 40, DOI: 10.14708/ma.v4i6.1173.

A. Martin and S. Raun, Predator-prey models with delay and prey harvesting, Journal of Mathematical Biology 43(3) (2001), 247 – 267, DOI: 10.1007/s002850100095.

R. E. Mickens, Nonstandard Finite Difference Models of Differential Equations, World Scientific, Singapore (1994).

J. J. H. Miller, R. E. O’Riordan and G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapore (1996), DOI: 10.1142/8410.

R. E. O’Malley Jr., Introduction to Singular Perturbations, Applied Mathematics and Mechanics Book series, Vol. 14, Academic Press, New York (1974), URL: https://www.sciencedirect.com/bookseries/applied-mathematics-and-mechanics/vol/14/suppl/C.

K. C. Patidar and K. K. Sharma, Uniformly convergent non-standard finite difference methods for singularly perturbed differential-difference equations with delay and advance, International Journal for Numerical Methods in Engineering 66(2) (2006), 272 – 296, DOI: 10.1002/nme.1555.

P. Rai and K. K. Sharma, Parameter uniform numerical method for singularly perturbed differential-difference equations with interior layers, International Journal of Computer Mathematics 88(16) (2011), 3416 – 3435, DOI: 10.1080/00207160.2011.591387.

A. A. Salama and D. G. Al-Amery, Asymptotic-numerical method for singularly perturbed differential difference equations of mixed-type, Journal of Applied Mathematics & Informatics 33(5-6) (2015), 485 – 502, DOI: 10.14317/jami.2015.485.

L. Sirisha, K. Phaneendra and Y. N. Reddy, Mixed finite difference method for singularly perturbed differential difference equations with mixed shifts via domain decomposition, Ain Shams Engineering Journal 9(4) (2018), 647 – 654, DOI: 10.1016/j.asej.2016.03.009.

R. B. Stein, Some models of neuronal variability, Biophysical Journal 7(1) (1967), 37 – 68, DOI: 10.1016/S0006-3495(67)86574-3.

D. K. Swamy, K. Phaneendra and Y. N. Reddy, Accurate numerical method for singularly perturbed differential-difference equations with mixed shifts, Khayyam Journal of Mathematics 4 (2018), 110 – 122, DOI: 10.22034/KJM.2018.57949.

M. M. Woldaregay and G. F. Duressa, Exponentially fitted tension spline method for singularly perturbed differential difference equations, Iranian Journal of Numerical Analysis and Optimization 11 (2021), 261 – 282, DOI: 10.22067/ijnao.2021.68227.1009.

Downloads

Published

09-05-2023
CITATION

How to Cite

Amala, P., Lalu, M., & Phaneendra, K. (2023). Numerical Simulation for a Differential Difference Equation With an Interior Layer. Communications in Mathematics and Applications, 14(1), 189–202. https://doi.org/10.26713/cma.v14i1.2047

Issue

Section

Research Article