Uniform Convergence of Multigrid Methods for Elliptic Quasi-Variational Inequalities and Its Implementation

Authors

DOI:

https://doi.org/10.26713/cma.v14i2.2039

Keywords:

Quasi-variational inequality, Finite element method, HJB equation, Multigrid method

Abstract

In this paper, algebraic multigrid methods on adaptive finite element discretisation are applied for solving elliptic quasi-variational inequalities. The uniform convergence of the multigrid scheme has been established which proves that the multigrid methods have a contraction number with respect to the maximum norm. Numerical results which demonstrate the high efficiency of these methods are given for a quasi-variational inequality arising from impulse control problem on a domain with nonpolygonal boundaries.

Downloads

Download data is not yet available.

References

M. Beggas and M. Haiour, The maximum norm analysis of Schwarz method for elliptic quasi-variational inequalities, Kragujevac Journal of Mathematics 45(4) (2021), 635 – 645, DOI: 10.46793/KgJMat2104.635B.

M. E. Belouafi and M. Beggas, Maximum norm convergence of Newton-multigrid methods for elliptic quasi-variational inequalities with nonlinear source terms, Advances in Mathematics: Scientific Journal 11(10) (2022), 969 – 983, DOI: 10.37418/amsj.11.10.12.

S. Boulaaras and M. Haiour, The finite element approximation in parabolic quasi-variational inequalities related to impulse control problem with mixed boundary conditions, Journal of Taibah University for Science 7(3) (2013), 105 – 113, DOI: 10.1016/j.jtusci.2013.05.005.

S. Boulaaras, M. A. B. Le Hocine and M. Haiour, The finite element approximation in a system of parabolic quasi-variational inequalities related to management of energy production with mixed boundary condition, Computational Mathematics and Modeling 25(4) (2014), 530 – 543, DOI: 10.1007/s10598-014-9247-9.

M. Boulbrachene and B. Chentouf, The finite element approximation of Hamilton-Jacobi-Bellman equations: the noncoercive case, Applied Mathematics and Computation 158(2) (2004), 585 – 592, DOI: 10.1016/j.amc.2003.10.002.

M. Boulbrachene and M. Haiour, The finite element approximation of Hamilton-Jacobi-Bellman equations, Computers & Mathematics with Applications 41(7-8) (2001), 993 – 1007, DOI: 10.1016/S0898-1221(00)00334-5.

M. Boulbrachene, M. Haiour and S. Saadi, L∞-error estimate for a system of elliptic quasivariational inequalities, International Journal of Mathematics and Mathematical Sciences 2003 (2003), Article ID 579135, 15 pages, DOI: 10.1155/S016117120301189X.

A. Brandt, Algebraic multigrid theory: the symmetric case, Applied Mathematics and Computation 19(1-4) (1986), 23 – 56, DOI: 10.1016/0096-3003(86)90095-0.

P. G. Ciarlet and P.-A. Raviart, Maximum principle and uniform convergence for the finite element method, Computer Methods in Applied Mechanics and Engineering 2(1) (1973), 17 – 31, DOI: 10.1016/0045-7825(73)90019-4.

P. Cortey-Dumont, Approximation numérique d’une inéquation quasi variationnelle liée à des problèmes de gestion de stock, RAIRO Analyse Numérique 14(4) (1980), 335 – 346, DOI: 10.1051/m2an/1980140403351.

P. Cortey-Dumont, On finite element approximation in the L∞-norm of variational inequalities, Numerische Mathematik 47(1) (1985), 45 – 57, DOI: 10.1007/BF01389875.

L. C. Evans, Classical solutions of the Hamilton-Jacobi-Bellman equation for uniformly elliptic operators, Transactions of the American Mathematical Society 275(1) (1983), 245 – 255, DOI: 10.1090/S0002-9947-1983-0678347-8.

W. Hackbusch, Multi-Grid Methods and Applications, 1st edition, Springer Series in Computational Mathematics series, Vol. 4, Springer-Verlag, Berlin — Heidelberg, xiv + 378 pages (1985), DOI: 10.1007/978-3-662-02427-0.

W. Hackbusch and H. D. Mittelmann, On multi-grid methods for variational inequalities, Numerische Mathematik 42(1) (1983), 65 – 76, DOI: 10.1007/BF01400918.

M. Haiour, Etude de la convergence uniforme de la méthode multigrilles appliquées aux problèmes frontières libres, PhD thesis, Université de Annaba-Badji Mokhtar, No. 328 (2001), URL: https://www.pnst.cerist.dz/detail.php?id=19817.

M. Haiour and S. Boulaaras, Uniform convergence of Schwarz method for elliptic quasi-variational inequalities related to impulse control problem, An-Najah University Journal for Research – A (Natural Sciences) 24(1) (2010), 71 – 89, DOI: 10.35552/anujr.a.24.1.223.

B. Hanouzet and JL.JOLY, Convergence uniforme des iteres definissant la solution d’une inequation quasi variationnelle abstraite, Journées équations aux dérivées partielles 286(17) (1978), 735 – 738.

M. A. B. Le Hocine, S. Boulaaras and M. Haiour, On finite element approximation of system of parabolic quasi-variational inequalities related to stochastic control problems, Cogent Mathematics 3(1) (2016), 1251386, DOI: 10.1080/23311835.2016.1251386.

M. E. A. B. Le Hocine and M. Haiour, L∞-error analysis for parabolic quasi-variational inequalities related to impulse control problems, Computational Mathematics and Modeling 28(1) (2017), 89 – 108, DOI: 10.1007/S10598-016-9349-7.

R. H. W. Hoppe, Multigrid algorithms for variational inequalities, SIAM Journal on Numerical Analysis 24(5) (1987), 1046 – 1065, DOI: 10.1137/0724069.

R. H. W. Hoppe, Multi-grid methods for Hamilton-Jacobi-Bellman equations, Numerische Mathematik 49(2) (1986), 239 – 254, DOI: 10.1007/BF01389627.

R. H. W. Hoppe, Une méthode multigrille pour la solution des problèmes d’obstacle, ESAIM: Mathematical Modelling and Numerical Analysis 24(6) (1990), 711 – 735, DOI: 10.1051/m2an/1990240607111.

A. Reusken, Introduction to multigrid methods for elliptic boundary value problems, Institut für Geometrie und Praktische Mathematik 42 (2009), 467 – 506.

A. Reusken, On maximum norm convergence of multigrid methods for elliptic boundary value problems, SIAM Journal on Numerical Analysis 31(2) (1994), 378 – 392, DOI: 10.1137/0731020.

Downloads

Published

18-09-2023
CITATION

How to Cite

Belouafi, M. E., Beggas, M., & Nesba, N. E. H. (2023). Uniform Convergence of Multigrid Methods for Elliptic Quasi-Variational Inequalities and Its Implementation. Communications in Mathematics and Applications, 14(2), 633–646. https://doi.org/10.26713/cma.v14i2.2039

Issue

Section

Research Article