Uniform Convergence of Multigrid Methods for Elliptic Quasi-Variational Inequalities and Its Implementation
DOI:
https://doi.org/10.26713/cma.v14i2.2039Keywords:
Quasi-variational inequality, Finite element method, HJB equation, Multigrid methodAbstract
In this paper, algebraic multigrid methods on adaptive finite element discretisation are applied for solving elliptic quasi-variational inequalities. The uniform convergence of the multigrid scheme has been established which proves that the multigrid methods have a contraction number with respect to the maximum norm. Numerical results which demonstrate the high efficiency of these methods are given for a quasi-variational inequality arising from impulse control problem on a domain with nonpolygonal boundaries.
Downloads
References
M. Beggas and M. Haiour, The maximum norm analysis of Schwarz method for elliptic quasi-variational inequalities, Kragujevac Journal of Mathematics 45(4) (2021), 635 – 645, DOI: 10.46793/KgJMat2104.635B.
M. E. Belouafi and M. Beggas, Maximum norm convergence of Newton-multigrid methods for elliptic quasi-variational inequalities with nonlinear source terms, Advances in Mathematics: Scientific Journal 11(10) (2022), 969 – 983, DOI: 10.37418/amsj.11.10.12.
S. Boulaaras and M. Haiour, The finite element approximation in parabolic quasi-variational inequalities related to impulse control problem with mixed boundary conditions, Journal of Taibah University for Science 7(3) (2013), 105 – 113, DOI: 10.1016/j.jtusci.2013.05.005.
S. Boulaaras, M. A. B. Le Hocine and M. Haiour, The finite element approximation in a system of parabolic quasi-variational inequalities related to management of energy production with mixed boundary condition, Computational Mathematics and Modeling 25(4) (2014), 530 – 543, DOI: 10.1007/s10598-014-9247-9.
M. Boulbrachene and B. Chentouf, The finite element approximation of Hamilton-Jacobi-Bellman equations: the noncoercive case, Applied Mathematics and Computation 158(2) (2004), 585 – 592, DOI: 10.1016/j.amc.2003.10.002.
M. Boulbrachene and M. Haiour, The finite element approximation of Hamilton-Jacobi-Bellman equations, Computers & Mathematics with Applications 41(7-8) (2001), 993 – 1007, DOI: 10.1016/S0898-1221(00)00334-5.
M. Boulbrachene, M. Haiour and S. Saadi, L∞-error estimate for a system of elliptic quasivariational inequalities, International Journal of Mathematics and Mathematical Sciences 2003 (2003), Article ID 579135, 15 pages, DOI: 10.1155/S016117120301189X.
A. Brandt, Algebraic multigrid theory: the symmetric case, Applied Mathematics and Computation 19(1-4) (1986), 23 – 56, DOI: 10.1016/0096-3003(86)90095-0.
P. G. Ciarlet and P.-A. Raviart, Maximum principle and uniform convergence for the finite element method, Computer Methods in Applied Mechanics and Engineering 2(1) (1973), 17 – 31, DOI: 10.1016/0045-7825(73)90019-4.
P. Cortey-Dumont, Approximation numérique d’une inéquation quasi variationnelle liée à des problèmes de gestion de stock, RAIRO Analyse Numérique 14(4) (1980), 335 – 346, DOI: 10.1051/m2an/1980140403351.
P. Cortey-Dumont, On finite element approximation in the L∞-norm of variational inequalities, Numerische Mathematik 47(1) (1985), 45 – 57, DOI: 10.1007/BF01389875.
L. C. Evans, Classical solutions of the Hamilton-Jacobi-Bellman equation for uniformly elliptic operators, Transactions of the American Mathematical Society 275(1) (1983), 245 – 255, DOI: 10.1090/S0002-9947-1983-0678347-8.
W. Hackbusch, Multi-Grid Methods and Applications, 1st edition, Springer Series in Computational Mathematics series, Vol. 4, Springer-Verlag, Berlin — Heidelberg, xiv + 378 pages (1985), DOI: 10.1007/978-3-662-02427-0.
W. Hackbusch and H. D. Mittelmann, On multi-grid methods for variational inequalities, Numerische Mathematik 42(1) (1983), 65 – 76, DOI: 10.1007/BF01400918.
M. Haiour, Etude de la convergence uniforme de la méthode multigrilles appliquées aux problèmes frontières libres, PhD thesis, Université de Annaba-Badji Mokhtar, No. 328 (2001), URL: https://www.pnst.cerist.dz/detail.php?id=19817.
M. Haiour and S. Boulaaras, Uniform convergence of Schwarz method for elliptic quasi-variational inequalities related to impulse control problem, An-Najah University Journal for Research – A (Natural Sciences) 24(1) (2010), 71 – 89, DOI: 10.35552/anujr.a.24.1.223.
B. Hanouzet and JL.JOLY, Convergence uniforme des iteres definissant la solution d’une inequation quasi variationnelle abstraite, Journées équations aux dérivées partielles 286(17) (1978), 735 – 738.
M. A. B. Le Hocine, S. Boulaaras and M. Haiour, On finite element approximation of system of parabolic quasi-variational inequalities related to stochastic control problems, Cogent Mathematics 3(1) (2016), 1251386, DOI: 10.1080/23311835.2016.1251386.
M. E. A. B. Le Hocine and M. Haiour, L∞-error analysis for parabolic quasi-variational inequalities related to impulse control problems, Computational Mathematics and Modeling 28(1) (2017), 89 – 108, DOI: 10.1007/S10598-016-9349-7.
R. H. W. Hoppe, Multigrid algorithms for variational inequalities, SIAM Journal on Numerical Analysis 24(5) (1987), 1046 – 1065, DOI: 10.1137/0724069.
R. H. W. Hoppe, Multi-grid methods for Hamilton-Jacobi-Bellman equations, Numerische Mathematik 49(2) (1986), 239 – 254, DOI: 10.1007/BF01389627.
R. H. W. Hoppe, Une méthode multigrille pour la solution des problèmes d’obstacle, ESAIM: Mathematical Modelling and Numerical Analysis 24(6) (1990), 711 – 735, DOI: 10.1051/m2an/1990240607111.
A. Reusken, Introduction to multigrid methods for elliptic boundary value problems, Institut für Geometrie und Praktische Mathematik 42 (2009), 467 – 506.
A. Reusken, On maximum norm convergence of multigrid methods for elliptic boundary value problems, SIAM Journal on Numerical Analysis 31(2) (1994), 378 – 392, DOI: 10.1137/0731020.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.