Detour Pebbling Number on Some Commutative Ring Graphs

Authors

DOI:

https://doi.org/10.26713/cma.v14i1.2018

Keywords:

Pebbling number, Detour pebbling number, Zero-divisor, Sum and the product of zero-divisor graph

Abstract

The detour pebbling number of a graph \(G\) is the least positive integer \(f^{*}(G)\) such that these pebbles are placed on the vertices of \(G\), we can move a pebble to a target vertex by a sequence of pebbling moves each move taking two pebbles off a vertex and placing one of the pebbles on an adjacent vertex using detour path. In this paper, we compute the detour pebbling number for the commutative ring of zero-divisor graphs, sum and the product of zero divisor graphs.

Downloads

Download data is not yet available.

References

D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, Journal of Algebra 217(2) (1999), 434 – 447, DOI: 10.1006/jabr.1998.7840.

R. A. Beeler, T. W. Haynes and R. Keaton, Domination cover rubbling, Discrete Applied Mathematics 260 (2019), 75 – 85, DOI: 10.1016/j.dam.2019.01.037.

J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland, New York (1977), URL: https://www.zib.de/groetschel/teaching/WS1314/BondyMurtyGTWA.pdf.

G. Chartrand, Introductory Graph Theory, Dover Publications Inc., 320 pages (1985).

F. R. K. Chung, Pebbling in hypercubes, SIAM Journal on Discrete Mathematics 2(4) (1989), 467 – 472, DOI: 10.1137/0402041.

G. Hurlbert, A survey of graph pebbling, Congressus Numerantium 139 (1999), 41 – 64.

A. Lourdusamy and S. S. Nellainayaki, Detour pebbling in graphs, Advances in Mathematics: Scientific Journal 9(12) (2020), 10583 – 10589, DOI: 10.37418/amsj.9.12.44.

A. Lourdusamy and S. S. Nellainayaki, Detour pebbling on path related graphs, Advances in Mathematics: Scientific Journal 10(4) (2021), 2017 – 2024, DOI: 10.37418/amsj.10.4.16.

Downloads

Published

09-05-2023
CITATION

How to Cite

Lourdusamy, A., Iammal, S. K., & Dhivviyanandam, . I. (2023). Detour Pebbling Number on Some Commutative Ring Graphs. Communications in Mathematics and Applications, 14(1), 323–331. https://doi.org/10.26713/cma.v14i1.2018

Issue

Section

Research Article