The Quasi-Hyperbolic Tribonacci and Quasi-Hyperbolic Tribonacci-Lucas Functions

Authors

  • Dursun Taşçı Gazi íœniversitesi, Fen Fakültesi, Matematik Bölümü, Teknikokullar, 06500 Ankara
  • Huriye Azman Gazi íœniversitesi, Fen Fakültesi, Matematik Bölümü, Teknikokullar, 06500 Ankara

DOI:

https://doi.org/10.26713/cma.v5i1.201

Keywords:

Tribonacci Numbers, Hyperbolic Functions, Quasi-Hyperbolic Functions

Abstract

In the present paper, we studied an extension of the classical hyperbolic functions. We wrote a new relation that is equal to the Binet formula of the Tribonacci-Lucas numbers. We defined the quasi-hyperbolic Tribonacci and quasi-hyperbolic Tribonacci-Lucas functions. Finally, we investigated the recurrence and hyperbolic properties of these new hyperbolic functions.

Downloads

Download data is not yet available.

Author Biographies

Dursun Taşçı, Gazi íœniversitesi, Fen Fakültesi, Matematik Bölümü, Teknikokullar, 06500 Ankara

Gazi íœniversitesi, Fen Fakültesi, Matematik Bölümü, Teknikokullar, 06500 Ankara, Türkiye

Huriye Azman, Gazi íœniversitesi, Fen Fakültesi, Matematik Bölümü, Teknikokullar, 06500 Ankara

Gazi íœniversitesi, Fen Fakültesi, Matematik Bölümü, Teknikokullar, 06500 Ankara, Türkiye

References

W.R. Spickerman, Binet’s formula for the tribonacci sequence, Fibonacci Quarterly 20(2) (1982), 118-121.

A. Stakhov and I. Tkachenko, Hyperbolic fibonacci trigonometry, Rep. Ukr. Acad. Sci. 7(1993), 9-14.

Catalani M.Identities for Tribonacci-related sequences. arXiv:math/0209179v1 [math.CO], 15 Sep 2002.

T.D. Noe and J.V. Post, Primes in Fibonacci $n$-step and Lucas $n$-step sequences, J. of Integer Sequences 8 (2005), Article 05.4.4.

A. Stakhov and B. Rozin, On a new class of hyperbolic functions, Chaos, Solitons & Fractals 23(2) (2005), 379-389.

A. Stakhov, The generalized principle of the golden section and its applications in mathematics, science and engineering, Chaos, Solitons & Fractals 26(2) (2005), 263-289.

A. Stakhov and B. Rozin, The Golden Shofar, Chaos, Solitons & Fractals 26(3) (2005), 677-684.

A. Stakhov and B. Rozin, Theory of Binet formulas for Fibonacci and Lucas $p$-numbers, Chaos, Solitons & Fractals 27(5) (2005), 1163-1177.

A. Stakhov and B. Rozin, The continuous functions for the Fibonacci and Lucas $p$-numbers, Chaos, Solitons & Fractals 28(4) (2006), 1014-1125.

A.P. Stakhov, Gazale formulas, a new class of the hyperbolic Fibonacci and Lucas functions and the improved method of the "golden" cryptography, Academy of Trinitarism, Moscow: 77-6567, publication 14098, 21.12.2006.

A. Stakhov and B. Rozin, The "golden" hyperbolic models of Universe, Chaos, Solitons & Fractals 34(2)(2007), 159-171.

S. Falcon and A. Plaza, The $k$-Fibonacci hyperbolic functions, Chaos, Solitons & Fractals 38(2) (2008), 409-420.

E.G. Kocer, N. Tuglu and A. Stakhov, Hyperbolic functions with second order recurrence sequences, Ars Comb., 01/2008; 88.

Downloads

Published

15-07-2014
CITATION

How to Cite

Taşçı, D., & Azman, H. (2014). The Quasi-Hyperbolic Tribonacci and Quasi-Hyperbolic Tribonacci-Lucas Functions. Communications in Mathematics and Applications, 5(1), 31–40. https://doi.org/10.26713/cma.v5i1.201

Issue

Section

Research Article