Thermo-Diffusion Effect on MHD Flow of Various Nano Fluids Past a Vertical Porous Plate
DOI:
https://doi.org/10.26713/cma.v14i1.1986Keywords:
MHD, Soret effect, Cu water, Al2O3 water, TiO2 water nano fluidsAbstract
An analytical model is employed for the nanofluid flow, heat and mass transfer from an infinite vertical plate in the presence of chemical reaction, and Soret effect. The governing equations that come from this are non-dimensionalized, transformed into a comparable form, and then solved using the three term perturbation technique and the accompanying boundary conditions. For this investigation, three different types of nano-fluids containing metallic nano particles as Cu (copper), and non-metallic nano particles as Al2O3 (alumina oxide), TiO2 (titanium oxide) are considered, and water is considered as a base nanofluid. Using the MATLAB “Perturbation Method” and the findings already published in the literature, the resulting results are verified. It is described how important variables including the magnetic parameter, chemical reaction parameter, Soret number, the solid volume percentage of nanoparticles, the kind of nanofluid used, Nusselt number, Sherwood number and skin friction coefficient affect the flow. Tabular comparisons with published findings are shown.
Downloads
References
W. Abbas and M. M. Magdy, Heat and mass transfer analysis of nanofluid flow based on Cu, Al2O3 and TiO2 over a moving rotating plate and impact of various nanoparticle shapes, Mathematical Problems in Engineering 2020 (2020), Article ID 9606382, 12 pages, DOI: 10.1155/2020/9606382.
J. Albadr, S. Tayal and M. Alasadi, Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations, Case Studies in Thermal Engineering 1(1) (2013), 38 – 44, DOI: 10.1016/j.csite.2013.08.004.
E. H. Aly, Radiation and MHD boundary layer stagnation-point of nanofluid flow towards a stretching sheet embedded in a porous medium: analysis of suction/injection and heat generation/absorption with effect of the slip model, Mathematical Problems in Engineering 2015 (2015), Article ID 563547, 20 pages, DOI: 10.1155/2015/563547.
S. U. S. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, in: Conference - 1995 International Mechanical Engineering Congress and Exhibition, San Francisco, CA (United States), 12-17 November 1995, URL: https://www.osti.gov/biblio/196525.
C. H. Chon, K. D. Kihm, S. P. Lee and S. U. S. Choi, Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Applied Physics Letters 87 (2005), 153107, DOI: 10.1063/1.2093936.
M. Chopkar, P. K. Das and I. Manna, Synthesis and characterization of nanofluid for advanced heat transfer applications, Scripta Materialia 55(6) (2006), 549 – 552, DOI: 10.1016/j.scriptamat.2006.05.030.
J. A. Eastman, U. S. Choi, S. Li, L. J. Thompson and S. Lee, Enhanced thermal conductivity through the development of nanofluids, in: Nanophase and Nanocomposite Materials II, S. Komarneni, J. C. Parker and H. J. Wollenberger (Eds.), Materials Research Society, Pittsburgh (1997), Symposium Proceedings, Vol. 457, pp. 3 – 11, URL: https://apps.dtic.mil/sti/pdfs/ADA329567.pdf.
J. A. Falade, J. C. Ukaegbu, A. C. Egere and S. O. Adesanya, MHD oscillatory flow through a porous channel saturated with porous medium, Alexandria Engineering Journal 56(1) (2017), 147 – 152, DOI: 10.1016/j.aej.2016.09.016.
M. A. A. Hamad, Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field, International Communications in Heat and Mass Transfer 38(4) (2011), 487 – 492, DOI: 10.1016/j.icheatmasstransfer.2010.12.042.
S. Z. Heris, M. N. Esfahany and S. Gh. Etemad, Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube, International Journal of Heat and Fluid Flow 28(2) (2007), 203 – 210, DOI: 10.1016/j.ijheatfluidflow.2006.05.001.
A. Hussanan, I. Khan, H. Hashim, M. K. Anuar, N. Ishak, N. M. Sarif and M. Z. Salleh, Unsteady MHD flow of some nanofluids past an accelerated vertical plate embedded in a porous medium, Jurnal Teknologi 78(2) (2016), 121 – 126, DOI: 10.11113/jt.v78.4900.
J. R. Konda, N. P. M. Reddy, R. Konijeti and A. Dasore, Effect of non-uniform heat source/sink on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium, Multidiscipline Modeling in Materials and Structures 15(2) (2019), 452 – 472, DOI: 10.1108/MMMS-01-2018-0011.
T. S. Kumar and B. R. Kumar, Unsteady MHD free convective boundary layer flow of a nanofluid past a moving vertical plate, IOP Conference Series: Materials Science and Engineering 263(6) (2017), 062015, DOI: 10.1088/1757-899X/263/6/062015.
T. S. Kumar, P. A. Dinesh and O. D. Makinde, Impact of lorentz force and viscous dissipation on unsteady nanofluid convection flow over an exponentially moving vertical plate, Mathematical Models and Computer Simulations 12(4) (2020), 631 – 646, DOI: 10.1134/S2070048220040110.
A. V. Kuznetsov and D. A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate, International Journal of Thermal Sciences 49(2) (2010), 243 – 247, DOI: 10.1016/j.ijthermalsci.2009.07.015.
R. A. Mahdi, H. A. Mohammed, K. M. Munisamy and N. H. Saeid, Review of convection heat transfer and fluid flow in porous media with nanofluid, Renewable and Sustainable Energy Reviews 41 (2015), 715 – 734, DOI: 10.1016/j.rser.2014.08.040.
O. D. Makinde and A. Aziz, MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition, International Journal of Thermal Sciences 49(9) (2010), 1813 – 1820, DOI: 10.1016/j.ijthermalsci.2010.05.015.
S. Mukhopadhyay and I. C. Mandal, Magnetohydrodynamic (MHD) mixed convection slip flow and heat transfer over a vertical porous plate, Engineering Science and Technology, an International Journal 18(1) (2015), 98 – 105, DOI: 10.1016/j.jestch.2014.10.001.
A. Nasiri, M. Shariaty-Niasar, A. Rashidi, A. Amrollahi and R. Khodafarin, Effect of dispersion method on thermal conductivity and stability of nanofluid, Experimental Thermal and Fluid Science 35(4) (2011), 717 – 723, DOI: 10.1016/j.expthermflusci.2011.01.006.
S. Parvin, R. Nasrin, M. A. Alim, N. F. Hossain and A. J. Chamkha, Thermal conductivity variation on natural convection flow of water–alumina nanofluid in an annulus, International Journal of Heat and Mass Transfer 55(19-20) (2012), 5268 – 5274, DOI: 10.1016/j.ijheatmasstransfer.2012.05.035.
P. D. Prasad, R. V. M. S. S. K. Kumar and S. V. K. Varma, Heat and mass transfer analysis for the MHD flow of nanofluid with radiation absorption, Ain Shams Engineering Journal 9(4) (2018), 801 – 813, DOI: 10.1016/j.asej.2016.04.016.
L. Qiang and X. Yimin, Convective heat transfer and flow characteristics of Cu-water nanofluid, Science in China Series E: Technolgical Science 45(4) (2002), 408 – 416, DOI: 10.1360/02ye9047.
P. Rana, R. Bhargava and O. A. Bég, Numerical solution for mixed convection boundary layer flow of a nanofluid along an inclined plate embedded in a porous medium, Computers & Mathematics with Applications 64(9) (2012), 2816 – 2832, DOI: 10.1016/j.camwa.2012.04.014.
M. M. Rashidi, N. Freidoonimehr, A. Hosseini, O. A. Bég and T.-K. Hung, Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal permeable sheet with transpiration, Meccanica 49(2) (2014), 469 – 482, DOI: 10.1007/s11012-013-9805-9.
A. K. Santra, S. Sen and N. Chakraborty, Study of heat transfer due to laminar flow of copper–water nanofluid through two isothermally heated parallel plates, International Journal of Thermal Sciences 48(2) (2009), 391 – 400, DOI: 10.1016/j.ijthermalsci.2008.10.004.
B. Sharma, B. Kumar and R. N. Barman, Numerical investigation of cu-water nanofluid in a differentially heated square cavity with conducting solid square cylinder at center, International Journal of Heat and Technology 36(2) (2018), 714 – 722, DOI: 10.18280/ijht.360238.
M. Sheikholeslami, M. Hatami and D. D. Ganji, Nanofluid flow and heat transfer in a rotating system in the presence of a magnetic field, Journal of Molecular Liquids 190 (2014), 112 – 120, DOI: 10.1016/j.molliq.2013.11.002.
R. S. Tripathy, G. C. Dash, S. R. Mishra and S. Baag, Chemical reaction effect on MHD free convective surface over a moving vertical plate through porous medium, Alexandria Engineering Journal 54(3) (2015), 673 – 679, DOI: 10.1016/j.aej.2015.04.012.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.