Forccheimer Flow of Williamson Nano Fluid Over a Stretching Sheet With Cattaneo-Christov Heat Flux in Saturated Porous Media

Authors

  • Ch. Pushpalatha Department of Mathematics, Telangana Social Welfare Residential Degree College For Women Suryapet, Suryapet, Telangana, India
  • Ch. Kishore Kumar Department of Mathematics, Nizam College (A), Osmania University, Hyderabad, India https://orcid.org/0000-0001-8368-2745
  • B. Shankar Department of Mathematics, Osmania University, Hyderabad, India https://orcid.org/0000-0003-1575-4625

DOI:

https://doi.org/10.26713/cma.v14i2.1950

Keywords:

Forccheimer flow, Williamson nanofluid, Cattaneo-Christov heat flux, Porous medium

Abstract

The present study deals with heat transmission of a Williamson nanofluid on a porous plate in a Darcy-Forccheimer flow through Cattaneo-Christov heat flux, velocity, temperature and concentration slips. The basic leading equations were converted by means of similarity transformations. Later, obtained equations were resolved by “Runge-Kutta-Felhberg Method”. The velocity, temperature and the concentration profiles were driven clearly and discussed thoroughly. The values of Nusselt number and reduced Sherwood no were given in tabulated form.

Downloads

Download data is not yet available.

References

S. A. Bakar, N. M. Arifin, F. M. Ali, N. Bachok and R. Nazar, A stability analysis on forced convection boundary layer stagnation-point slip flow in Darcy-Forchheimer porous medium towards a shrinking sheet, AIP Conference Proceedings 1870 (2017), 040074, DOI: 10.1063/1.4995906.

S. A. Bakar, N. M. Arifin, R. Nazar, F. M. Ali and I. Pop, Forced convection boundary layer stagnation-point flow in Darcy-Forchheimer porous medium past a shrinking sheet, Frontiers in Heat and Mass Transfer 7 (2016), 1 – 6, DOI: 10.5098/hmt.7.38.

C. Cattaneo, Sulla Conduzione Del Calore, in: Some Aspects of Diffusion Theory, A. Pignedoli (editor), C.I.M.E. Summer Schools, Vol. 42, Springer, Berlin — Heidelberg (2011), DOI: 10.1007/978-3-642-11051-1_5.

S. U. S. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, in: Developments and Applications of Non Newtonion flows, D. A. Siginer and H. P. Wang (editors), Vol. 231 (1995), 99 – 105, URL: https://ecotert.com/pdf/196525_From_unt-edu.pdf.

C. I. Christov, On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction, Mechanics Research Communications 36(4) (2009), 481 – 486, DOI: 10.1016/j.mechrescom.2008.11.003.

Y. Do, G. K. Ramesh, G. S. Roopa and M. Sankar, Navier’s slip condition on time dependent Darcy-Forchheimer nanofluid using spectral relaxation method, Journal of Central South University 26 (2019), 2000 – 2010, DOI: 10.1007/s11771-019-4147-y.

P. Z. Forchheimer, Wasserbewegungdurch Boden, Zeitschrift des Vereins Deutscher Ingenieure 45 (1901), 1782 – 1788.

J. B. J. Fourier, Théorie Analytique de la Chaleur, Paris, 1822, reprinted by Cambridge University Press, Cambridge (2009), DOI: 10.1017/CBO9780511693229.

N. V. Ganesh, A. K. A. Hakeem and B. Ganga, Darcy–Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipations effects, Ain Shams Engineering Journal 9(4) (2018), 939 – 951, DOI: 10.1016/j.asej.2016.04.019.

Hashim and M. Khan, On Cattaneo–Christov heat flux model for Carreau fluid flow over a slendering sheet, Results in Physics 7 (2017), 310 – 319, DOI: 10.1016/j.rinp.2016.12.031.

T. Hayat, M. Javed, M. Imtiaz and A. Alsaedi, Effect of Cattaneo-Christov heat flux on Jeffrey fluid flow with variable thermal conductivity, Results in Physics 8 (2018), 341 – 351, DOI: 10.1016/j.rinp.2017.12.007.

M. I. Khan, F. Alzahrani, A. Hobiny and Z. Ali, Estimation of entropy optimization in Darcy-Forchheimer flow of Carreau-Yasuda fluid (non-Newtonian) with first order velocity slip, Alexandria Engineering Journal 59(5) (2020), 3953 – 3962, DOI: 10.1016/j.aej.2020.06.057.

H. Masuda, A. Ebata, K. Teramae and N. Hishinuma, Changes in thermal conductivity and viscosity of liquid by ultrafine particle dispersion, Thermophysical Properties 7(4) (1993), 227 – 223, DOI: 10.2963/jjtp.7.227 (in Japanese).

M. Muskat and R. D. Wyckoff, The Flow of Homogeneous Fluids through Porous Media, 1st edition, J. W. Edwards, Inc., Ann Arbor, Michigan, xix + 763 (1946), https://blasingame.engr.tamu.edu/z_zCourse_Archive/P620_18C/P620_zReference/PDF_Txt_Msk_Flw_Fld_(1946).pdf.

M. Mustafa, Cattaneo-Christov heat flux model for rotating flow and heat transfer of upper-convected Maxwell fluid, AIP Advances 5 (2015), 047109, DOI: 10.1063/1.4917306.

S. Nadeem, S. T. Hussain and C. Lee, Flow of a Williamson fluid over a stretching sheet, Brazilian Journal of Chemical Engineering 30(3) (2013), 619 – 625, DOI: 10.1590/S0104-66322013000300019.

D. Pal and H. Mondal, Hydromagnetic convective diffusion of species in Darcy–Forchheimer porous medium with non-uniform heat source/sink and variable viscosity, International Communications in Heat and Mass Transfer 39(7) (2012), 913 – 917, DOI: 10.1016/j.icheatmasstransfer.2012.05.012.

M. A. Sadiq and T. Hayat, Darcy–Forchheimer flow of magneto Maxwell liquid bounded by convectively heated sheet, Result in Physics 6 (2016), 884 – 890, DOI: 10.1016/j.rinp.2016.10.019.

M. A. Seddeek, Influence of viscous dissipation and thermophoresis on Darcy–Forchheimer mixed convection in a fluid saturated porous media, Journal of Colloid and Interface Science 293(1) (2006), 137 – 142, DOI: 10.1016/j.jcis.2005.06.039.

A. V. Shenoy, Darcy-Forchheimer natural, forced and mixed convection heat transfer in non-Newtonian power-law fluid-saturated porous media, Transport in Porous Media 11 (1993), 219 – 241, DOI: 10.1007/BF00614813.

B. Straughan, Thermal convection with the Cattaneo-Christov model, International Journal of Heat and Mass Transfer 53(1–3) (2010), 95 – 98, DOI: 10.1016/j.ijheatmasstransfer.2009.10.001.

Downloads

Published

18-09-2023
CITATION

How to Cite

Pushpalatha, C., Kumar, C. K., & Shankar, B. (2023). Forccheimer Flow of Williamson Nano Fluid Over a Stretching Sheet With Cattaneo-Christov Heat Flux in Saturated Porous Media. Communications in Mathematics and Applications, 14(2), 655–665. https://doi.org/10.26713/cma.v14i2.1950

Issue

Section

Research Article