Restrained Weakly Connected 2-Domination in the Join of Graphs

Authors

DOI:

https://doi.org/10.26713/cma.v13i3.1939

Keywords:

Restrained weakly connected 2-domination, Join of graphs

Abstract

Downloads

Download data is not yet available.

References

G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs, 6th edition, CRC Press, New York (2016), DOI: 10.1201/b19731.

G. S. Domke, J. H. Hattingh, S. T. Hedetniemi, R. C. Laskar and L. R. Markus, Restrained domination in graphs, Discrete Mathematics 203 (1999), 61 – 69, DOI: 10.1016/S0012-365X(99)00016-3.

J. E. Dunbar, J. W. Grossman, J. H. Hattingh, S. T. Hedetniemi and A. A. McRae, On weakly connected domination in graphs, Discrete Mathematics 167-168 (1997), 261 – 269, DOI: 10.1016/S0012-365X(96)00233-6.

J. F. Fink and M. S. Jacobson, On n-domination, n-dependence and forbidden subgraphs, in: Graph Theory with Applications to Algorithms and Computer Science, Wiley, New York (1985), 301 – 312.

M. P. Militante and R. G. Eballe, Restrained weakly connected 2-domination in graphs, Advances and Applications in Discrete Mathematics 32 (2022), 13 – 24.

M. P. Militante, R. G. Eballe and R. E. Leonida, Weakly connected 2-domination in the join of graphs, Applied Mathematical Sciences 15 (2021), 569 – 577, DOI: 10.12988/ams.2021.914589.

Downloads

Published

29-11-2022
CITATION

How to Cite

Militante, M. P., Eballe, R. G., & Leonida, R. E. (2022). Restrained Weakly Connected 2-Domination in the Join of Graphs. Communications in Mathematics and Applications, 13(3), 1087–1096. https://doi.org/10.26713/cma.v13i3.1939

Issue

Section

Research Article