Certain Results on \((k,\mu)\)-Contact Metric Manifold endowed with Concircular Curvature Tensor
DOI:
https://doi.org/10.26713/cma.v14i1.1921Keywords:
\((k,\mu)\)-Contact metric manifold, non-Sasakian, Concircular curvature tensor, \(\eta\)-Einstein manifold, Scalar curvatureAbstract
The purpose of this paper is to study concircular curvature tensor on \((k,\mu)\)-contact metric manifold. Here, first we consider \(\phi\)-concircularly flat \((k,\mu)\)-contact metric manifold. Next, we describe concircularly pseudo-symmetric \((k,\mu)\)-contact metric manifold. Later, we study concircularly \(\phi\)-recurrent \((k,\mu)\)-contact metric manifold. Finally, we provide the three dimensional example for the existence of non-Sasakian concircularly \(\phi\)-recurrent \((k,\mu)\)-contact metric manifold.
Downloads
References
A. Barman, Concircular curvature tensor of a semi-symmetric metric connection in a Kenmotsu manifold, The Thai Journal of Mathematics 13(1) (2015), 245 – 257, URL: http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/1052/579.
D. E. Blair, Inversion Theory and Conformal Mapping, The Student Mathematical Library, Volume 9, American Mathematical Society, USA (2000), DOI: 10.1090/stml/009.
D. E. Blair, J. S. Kim and M. M. Tripathi, On the concircular curvature tensor of a contact metric manifold, Journal of the Korean Mathematical Society 42(5) (2005), 883 – 892, DOI: 10.4134/JKMS.2005.42.5.883.
D. E. Blair, T. Koufogiorgos and B. J. Papantonious, Contact metric manifolds satisfying a nullity condition, Israel Journal of Mathematics 91 (1995), 189 – 214, DOI: 10.1007/BF02761646.
E. Boeckx, A full classification of contact metric (k,µ)-spaces, Illinois Journal of Mathematics 44 (2000), 212 – 219, DOI: 10.1215/ijm/1255984960.
W. M. Boothby and H. C. Wang, On contact manifolds, Annals of Mathematics 68(3) (1958), 721 – 734, DOI: 10.2307/1970165.
E. Cartan, Sur une classe remarquable d’espaces de Riemann, Bulletin de la Société Mathématique de France 54 (1926), 214 – 264, DOI: 10.24033/bsmf.1105.
U. C. De, A. Yildiz and S. Ghosh, On a class of N(k)-contact metric manifolds, Mathematical Reports 16(66), 2 (2014), 207 – 217, URL: https://www.csm.ro/reviste/Mathematical_Reports/Pdfs/2014/2/4.pdf.
R. Deszcz, On pseudosymmetric spaces, Bulletin of the Belgian Mathematical Society, Series A 44 (1992), 1 – 34.
S. Hong, C. Özgür and M. M. Tripathi, On some special classes of Kenmotsu manifolds, Kuwait Journal of Science & Engineering 33(2) (2006), 19 – 32, URL: https://hdl.handle.net/20.500.12462/8369.
W. Kühnel, Conformal transformations between Einstein spaces, In: R. S. Kulkarni and U. Pinkall (eds.), Conformal Geometry. Aspects of Mathematics/Aspekte der Mathematik, Vol. 12, Vieweg+Teubner Verlag, Wiesbaden, pp. 105 – 146 (1988), DOI: 10.1007/978-3-322-90616-8_5.
Y. A. Ogawa, A condition for a compact Kaehlerian space to be locally symmetric, Natural Science Report of the Ochanomizu University 28 (1977), 21 – 23.
C. Özgür and M. M. Tripathi, On the concircular curvature tensor of an N(k)-quasi Einstein manifold, Mathematica Pannonica 18(1) (2007), 95 – 100, URL: http://mathematica-pannonica.ttk.pte.hu/articles/mp18-1/MP18-1(2007)pp095-100.pdf.
Z. I. Szabo, Structure theorems on Riemannian spaces satisfying R(X,Y) · R = 0. I. The local version, Journal of Differential Geometry 17(4) (1982), 531 – 582, URL: https://projecteuclid.org/journals/journal-of-differential-geometry/volume-17/issue-4/Structure-theorems-on-Riemannian-spaces-satisfying/10.4310/jdg/1214437486.pdf.
S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tóhoku Mathematical Journal (2) 40(3) (1988), 441 – 448, DOI: 10.2748/tmj/1178227985.
M. M. Tripathi and J. S. Kim, On the concircular curvature tensor of a (k,µ)-manifold, Balkan Journal of Geometry and Its Applications 9(1) (2004), 104 – 114, URL: http://www.mathem.pub.ro/bjga/v09n1/B09-1-TRI.pdf.
Venkatesha and C. S. Bagewadi, On concircular ϕ-recurrent LP-Sasakian manifolds, Differential Geometry – Dynamical Systems 10 (2008), 312 – 319, URL: http://www.mathem.pub.ro/dgds/v10/D10-VE.pdf.
K. Yano, Concircular geometry I. Concircular transformations, Proceedings of the Imperial Academy 16(6) (1940), 195 – 200, DOI: 10.3792/pia/1195579139.
K. Yano and M. Kon, Structures on Manifolds, Series in Pure Mathematics, Vol. 3, World Scientific Publishing Co., Singapore (1984), DOI: 10.1142/0067.
A. Yildiz and U. C. De, A classification of (k,µ)-contact metric manifolds, Communications of the Korean Mathematical Society 27(2) (2012), 327 – 339, DOI: 10.4134/CKMS.2012.27.2.327.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.