The Karush-Kuhn-Tucker Optimality Condition for \(q\)-Rung Orthopair Fuzzy Optimization Problem

Authors

DOI:

https://doi.org/10.26713/cma.v14i1.1907

Keywords:

Triangular qROPF number, Hukuhara differentiability, KKT optimality conditions, α, β level set

Abstract

In this paper, we defined the interval form of \(\alpha, \beta\) level set for triangular q-rung orthopair fuzzy (qROPF) number. To obtain a differentiability notion for qROPF valued functions, Hukuhara differentiability (H-differentiability) and \(\alpha, \beta\) level-wise H-differentiability is defined. Using this KKT optimality condition for qROPF optimization problem with triangular qROPF objective function are formulated.

Downloads

Download data is not yet available.

References

Ö. Akin and S. Bayeg, The concept of Hukuhara derivative and Aumann integral for intuitionistic fuzzy number valued functions, MANAS Journal of Engineering 6(2) (2018), 143 – 163, URL: https://dergipark.org.tr/tr/download/article-file/604856.

K. T. Atanassov, Intuitionistic fuzzy sets, International Journal Bioautomation 20(S1) (2016), S1-S6, URL: https://biomed.bas.bg/bioautomation/2016/vol_20.s1/files/20.s1_02.pdf.

Y. Chalco-Cano, W. A. Lodwick and H. Román-Flores, The Karush-Kuhn-Tucker optimality conditions for a class of fuzzy optimization problems using strongly generalized derivative, in: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 2013, pp. 203 – 208, DOI: 10.1109/IFSA-NAFIPS.2013.6608400.

A. Luqman, M. Akram and A. N. Al-Kenani, q-Rung orthopair fuzzy hypergraphs with applications, Mathematics 7(3) (2019), 260, DOI: 10.3390/math7030260.

S. Melliani, M. Elomari, L. S. Chadli and R. Ettoussi, Extension of Hukuhara difference in intuitionistic fuzzy set theory, Notes on Intuitionistic Fuzzy Sets 21(4) (2015), 34 – 47, URL: https://ifigenia.org/wiki/Issue:Extension_of_Hukuhara_difference_in_intuitionistic_fuzzy_set_theory.

M. Panigrahi, G. Panda and S. Nanda, Convex fuzzy mapping with differentiability and its application in fuzzy optimization, European Journal of Operational Research 185(1) (2008), 47 – 62, DOI: 10.1016/j.ejor.2006.12.053.

D. Qiu and C. Ouyang, Optimality conditions for fuzzy optimization in several variables under generalized differentiability, Fuzzy Sets and Systems 434 (2022), 1 – 19, DOI: 10.1016/j.fss.2021.05.006.

M. A. El Sayed, M. A. El-Shorbagy, F. A. Farahat, A. F. Fareed and M. A. Elsisy, Stability of parametric intuitionistic fuzzy multi-objective fractional transportation problem, Fractal and Fractional 5(4), 233, DOI: 10.3390/fractalfract5040233.

B. Wan, R. Lu and M. Han, Weighted average LINMAP group decision-making method based on q-rung orthopair triangular fuzzy numbers, Granular Computing 7 (2022), 489 – 503, DOI: 10.1007/s41066-021-00280-4.

H.-C. Wu, The Karush-Kuhn-Tucker optimality conditions for the optimization problem with fuzzy-valued objective function, Mathematical Methods of Operations Research 66(2) (2007), 203 – 224, DOI: 10.1007/s00186-007-0156-y.

H.-C. Wu, The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function, European Journal of Operational Research 176(1) (2007), 46 – 59, DOI: 10.1016/j.ejor.2005.09.007.

H.-C. Wu, The optimality conditions for optimization problems with convex constraints and multiple fuzzy-valued objective functions, Fuzzy Optimization and Decision Making 8(3) (2009), 295 – 321, DOI: 10.1007/s10700-009-9061-6.

H.-C. Wu, The optimality conditions for optimization problems with fuzzy-valued objective functions, Optimization 57(3) (2008), 473 – 489, DOI: 10.1080/02331930601120037.

R. R. Yager, Generalized orthopair fuzzy sets, IEEE Transactions on Fuzzy Systems 25(5) (2017), 1222 – 1230, DOI: 10.1109/TFUZZ.2016.2604005.

R. R. Yager, Pythagorean fuzzy subsets, in: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 2013, pp. 57-61, DOI: 10.1109/IFSA-NAFIPS.2013.6608375.

Downloads

Published

09-05-2023
CITATION

How to Cite

James, J., & Jose, S. (2023). The Karush-Kuhn-Tucker Optimality Condition for \(q\)-Rung Orthopair Fuzzy Optimization Problem. Communications in Mathematics and Applications, 14(1), 375–383. https://doi.org/10.26713/cma.v14i1.1907

Issue

Section

Research Article