Method of Construction and Some Properties of 4-Row-Regular Circulant Partial Hadamard Matrices of Order \((k\times 2k)\)

Authors

DOI:

https://doi.org/10.26713/cma.v13i2.1905

Keywords:

Hadamard matrices, Partial Hadamard matrices, Circulant partial Hadamard matrices, Toeplitz matrix, Orthogonal design

Abstract

In this paper, some properties of circulant partial Hadamard matrices of the form \(4-H(k\times 2k)\) have been obtained together with a method of construction with the help of Toeplitz matrices.

Downloads

Download data is not yet available.

References

R. Craigen, G. Faucher, R. Low and T. Wares, Circulant partial Hadamard matrices, Linear Algebra and its Applications 439(11) (2013), 3307 – 3317, DOI: 10.1016/j.laa.2013.09.004.

R. Euler, L.H. Gallardo and O. Rahavandrainy, Eigenvalues of circulant matrices and a conjecture of Ryser, Kragujevac Journal of Mathematics 45(5) (2021), 751 – 759, URL: https://imi.pmf.kg.ac.rs/kjm/pdf/accepted-finished/01600fd373df27b2cb120d21fe74373b_2536_08012019_032857/kjm_45_5-7.pdf.

E.G. Kocer, Circulant, negacyclic and semicirculant matrices with the modified Pell, Jacobsthal and Jacobsthal-Lucas numbers, Hacettepe Journal of Mathematics and Statistics 36(2) (2007), 133 – 142, URL: http://www.hjms.hacettepe.edu.tr/uploads/ef6188e6-4891-4148-8ad4-0ddf384b1629.pdf.

K.J. Horadam, Hadamard Matrices and Their Application, Princeton University Press, Princeton (2007), DOI: 10.1515/9781400842902.

M.-H. Kao, A new type of experimental design for event-related fMRI via Hadamard matrices, Statistics & Probability Letters 84 (2014), 108 – 112, DOI: 10.1016/j.spl.2013.09.024.

M.-H. Kao, Universally optimal fMRI design for comparing hemodynamic response functions, Statistica Sinica 25 (2015), 499 – 506, DOI: 10.5705/ss.2013.248.

H. Kharaghani and B. Tayfeh-Rezaie, A Hadamard matrix of order 428, Journal of Combinatorial Designs 13(6) (2005), 435 – 440, DOI: 10.1002/jcd.20043.

P.K. Manjhi and A. Kumar, On the construction of Hadamard matrices, International Journal of Pure and Applied Mathematics 120 (04) (2017), 51 – 58, URL: http://ijpam.eu/contents/2018-120-1/4/4.pdf.

P.K. Manjhi and M.K. Rana, Some new examples of circulant partial Hadamard matrices of type 4− H(k × n), Advances and Applications in Mathematical Sciences 21(05) (2022) 2559-2564, URL: https://www.mililink.com/upload/article/1387427361aams_vol_215_march_2022_a19_p2559-2564_pankaj_kumar_manjhi_and_mahendra_kumar_rana.pdf.

P.K. Manjhi and M.K. Rana, Some results on r-row-regular circulant partial Hadamard matrices of order (k × 2k), Communications in Mathematics and Applications 13(1) (2022), 129 – 136, DOI: 10.26713/cma.v13i1.1734.

F.K.H. Phoa, Y.L. Lin and T.C. Wang, Using swarm intelligence to search for circulant partial Hadamard matrices, in: Advances in Swarm Intelligence, Y. Tan, Y. Shi and C.A.C. Coello (eds.), ICSI 2014, Lecture Notes in Computer Science, Vol. 8794, Springer, Cham, DOI: 10.1007/978-3-319-11857-4_18.

H.J. Ryser, Combinatorial Mathematics, The Carus Mathematical Monographs, Vol. 14, AMS and The Mathematical Association of America, John Wiley and Sons Inc., New York, 154 pages (1963).

J. Seberry, Remarks on negacyclic matrices, Journal of Theoretical and Computational Mathematics 2(1) (2016), 71 – 79, URL: http://mathscinet.ru/files/2016JenniferSeberry_Nega-cyclic.pdf.

J. Seberry, Orthogonal Designs: Hadamard Matrices, Quadratic Forms and Algebra, Springer International Publishing AG (2017), URL: https://documents.uow.edu.au/~jennie/WEB/WEB17/2017_Bookmatter_OrthogonalDesigns.pdf.

Downloads

Published

17-08-2022
CITATION

How to Cite

Manjhi, P. K. (2022). Method of Construction and Some Properties of 4-Row-Regular Circulant Partial Hadamard Matrices of Order \((k\times 2k)\). Communications in Mathematics and Applications, 13(2), 613–623. https://doi.org/10.26713/cma.v13i2.1905

Issue

Section

Research Article