Instantons and the Point Particle Field Theory Derived From Strings
DOI:
https://doi.org/10.26713/cma.v14i2.1900Keywords:
Modular invariance, Effective action, Modular forms, Cusp formsAbstract
String theories with supersymmetry have perturbation series that are finite at each order with exponential bounds and do not reflect the presence of nonperturbative effects. Worldsheet instantons in superstring theory are surfaces which support fields with a finite Euclidean action. Dirichlet boundaries can be added to compact surfaces to represent the coupling of open and closed strings and yield an exponential term with a dependence on the coupling characteristic of strings rather than point-particle field theory. An additional set of worldsheet occurs in \(N=2\) string theory after the quantization of a \(U(1)\) symmetry. The \(N=2\) open string amplitudes with \(U(1)\) instantons may be derived from a cubic Yang-Mills theory. Nevertheless, the summation over the genus and \(U(1)\) instanton number includes other amplitudes without an exponential nonperturbative term. The expansion of \(N=2\) closed string amplitudes similarly consists of many vanishing terms, and couplings with the open string are required initially for the introduction of nonperturbative string effects. It is necessary to evaluate the action of a nontrivial solution to the effective field equations to find an exponential term with the dependence on the coupling of point-particle field theories. The theory then can be developed into a description of a model for elementary particles at larger distance scales. The theory of Eisenstein series and cusp forms is developed for the delineation between strings and point particles in the effective action.
Downloads
References
S. Alexandrov, J. Manschot and B. Pioline, D3-instantons, mock theta series and twistors, Journal of High Energy Physics 2013 (2013), 2, DOI: 10.1007/JHEP04(2013)002.
A. A. Belavin, A. M. Polyakov, A. S. Schwartz and Yu. S. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations, Physics Letters B 59(1) (1975), 85 – 87, DOI: 10.1016/0370-2693(75)90163-X.
M. Bianchi and A. Sagnotti, Open strings and the relative modular group, Physics Letters B 231(4) (1989), 389 – 396, DOI: 10.1016/0370-2693(89)90681-3.
M. Bonini, E. Gava and R. Iengo, Amplitudes in the N = 2 string, Modern Physics Letters A 6(9) (1991), 795 – 803, DOI: 10.1142/S0217732391000828.
G. Chalmers, O. Lechtenfeld and B. Niemeyer, N = 2 quantum string scattering, Nuclear Physics B 591(1-2) (2000), 39 – 76, DOI: 10.1016/S0550-3213(00)00560-5.
P. Deligne, La conjecture de Weil - I, Publications Mathématiques de l’Institut des Hautes Études Scientifiques 43 (1974), 273 – 307, DOI: 10.1007/BF02684373.
M. Dine, Supersymmetry and String Theory: Beyond the Standard Model, 2nd Edition, Cambridge University Press, Cambridge, 608 pages (2023).
G. W. Gibbons, M. B. Green and M. J. Perry, Instantons and seven-branes in type IIB superstring theory, Physics Letters B 370(1-2) (1996), 37 – 44, DOI: 10.1016/0370-2693(95)01565-5.
M. B. Green and P. Vanhove, Low-energy expansion of the one-loop type-II superstring amplitude, Physical Review D 61 (2000), 104011:1 – 13, DOI: 10.1103/PhysRevD.61.104011.
M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory, 25th Anniversary Edition (Cambridge Monographs on Mathematical Physics), Cambridge University Press, Cambridge (2012), DOI: 10.1017/CBO9781139248563.
M. B. Green, S. D. Miller and P. Vanhove, Small representations, string instantons, and Fourier modes of Eisenstein series, Journal of Number Theory 146 (2015), 187 – 309, DOI: 10.1016/j.jnt.2013.05.018.
M. B. Green, S. D. Miller, J. G. Russo and P. Vanhove, Eisenstein series for higher-rank groups and string theory amplitudes, Communications in Number Theory and Physics 4(3) (2010), 551 – 596, URL: https://www.intlpress.com/site/pub/files/_fulltext/journals/cntp/2010/0004/0003/CNTP-2010-0004-0003-a002.pdf.
G. Ishikawa, Y. Machida and M. Takahashi, Geometry of D4 conformal triality and singularities of tangent surfaces, Journal of Singularities 12 (2015), 27 – 52, DOI: 10.5427/jsing.2015.12c.
A. Kehagias and H. Partouche, The exact quartic effective action for the type IIB superstring, Physics Letters B 422(1-4) (1998), 109 – 116, DOI: 10.1016/S0370-2693(97)01430-5.
M. I. Knopp and M. Newman, Congruence subgroups of positive genus of the modular group, Illinois Journal of Mathematics 9(5) (1965), 577 – 583, DOI: 10.1215/ijm/1256059298.
O. Lechtenfeld and W. Siegel, N = 2 worldsheet instantons yield cubic self-dual Yang-Mills, Physics Letters B 405(1-2) (1997), 49 – 54, DOI: 10.1016/S0370-2693(97)00595-9.
N. Marcus, The N = 2 open string, Nuclear Physics B 387(2) (1992), 263 – 279, DOI: 10.1016/0550-3213(92)90161-4.
N. A. Obers and B. Pioline, Eisenstein series and string thresholds, Communications in Mathematical Physics 209 (2000), 275 – 324, DOI: 10.1007/s002200050022.
H. Ooguri and C. Vafa, N = 2 heterotic strings, Nuclear Physics B 367(1) (1991), 83 – 104, DOI: 10.1016/0550-3213(91)90042-V.
H. Ooguri and C. Vafa, All loop N = 2 string amplitudes, Nuclear Physics B 451(1-2) (1995), 121 – 161, DOI: 10.1016/0550-3213(95)00365-Y.
H. Ooguri and C. Vafa, Geometry of n = 2 strings, Nuclear Physics B 361(2) (1991), 469 – 518, DOI: 10.1016/0550-3213(91)90270-8.
B. Pioline, A note on non-perturbative R4 couplings, Physics Letters B 431(1-2) (1998), 73 – 76 DOI: 10.1016/S0370-2693(98)00554-1.
J. Polchinski, Combinatorics of boundaries in string theory, Physical Review D 50 (1994), R6041 – R6045, DOI: 10.1103/PhysRevD.50.R6041.
M. Schottenloher, The virasoro algebra, in: A Mathematical Introduction to Conformal Field Theory, Lecture Notes in Physics, Vol. 759, Springer, Berlin — Heidelberg (2008), DOI: 10.1007/978-3-540-68628-6_5.
J.-P. Serre, Quelques applications du théorème de densité de Chebotarev, Publications Mathématiques de l’Institut des Hautes Études Scientifiques 54 (1981), 123 – 201, DOI: 10.1007/BF02698692.
S. H. Shenker, The strength of nonperturbative effects in string theory, in: Random Surfaces and Quantum Gravity, O. Alvarez, E. Marinari and P. Windey (editors), NATO ASI Series, Vol. 262, Springer, Boston, MA (1991), DOI: 10.1007/978-1-4615-3772-4_12.
T. Shintani, On construction of holomorphic cusp forms of half integral weight, Nagoya Mathematical Journal 58 (1975), 83 – 126, DOI: 10.1017/S0027763000016706.
T. Shiota, Characterization of Jacobian varieties in terms of soliton equations, Inventiones Mathematicae 83 (1986), 333 – 382, DOI: 10.1007/BF01388967.
E. Silverstein, Duality, compactification, and e−1λ effects in the heterotic string theory, Physics Letters B 396(1-4) (1997), 91 – 96, DOI: 10.1016/S0370-2693(97)00098-1.
L. A. Takhtajan and L.-P. Teo, Weil-Petersson geometry of the universal Teichmüller space, in: Infinite Dimensional Algebras and Quantum Integrable Systems, P. P. Kulish, N. Manojlovich and H. Samtleben (editors), Progress in Mathematics, Vol. 237, Birkhäuser, Basel (2005), DOI: 10.1007/3-7643-7341-5_8.
D. Zagier, Introduction to modular forms, in: From Number Theory to Physics, M. Waldschmidt, P. Moussa, J. M. Luck and C. Itzykson (editors), Springer, Berlin — Heidelberg, pp. 238 – 291 (1992), DOI: 10.1007/978-3-662-02838-4_4.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.