Non-Newtonian Eyring-Powell-Casson Nanofluid Flow via Porous Medium: Numerical Analysis

Authors

DOI:

https://doi.org/10.26713/cma.v14i2.1899

Keywords:

Eyring-Powell fluids, Porous medium, Casson nanofluid, Mixed convection, Viscous dissipation, Chemical reaction

Abstract

Investigations have been conducted in this paper by considering the combined convective Eyring-Powell Casson nanofluid through porous media with thermal radiation and chemical reaction. The possible comparability transformations are used to present a flow problem in a non-linear system of ordinary differential equations with the assistance of Keller-Box method, known as implicit finite difference scheme, where the important conclusions have been drawn and discussed in the form of graphs and through the validation of the numerical outcomes for the various values of flow parameters like thermophoresis parameter, viscous dissipation, thermal radiation, porosity, Brownian motion parameter, and fluid parameters.

Downloads

Download data is not yet available.

References

M. H. Abolbashari, N. Freidoonimehr, F. Nazari and M. M. Rashidi, Analytical modeling of entropy generation for Casson nano-fluid flow induced by a stretching surface, Advanced Powder Technology 26(2) (2015), 542 – 552, DOI: 10.1016/j.apt.2015.01.003.

F. Ahmad, M. Nazeer, M. Saeed, A. Saleem and W. Ali, Heat and mass transfer of temperature-dependent viscosity models in a pipe: effects of thermal radiation and heat generation, Zeitschrift für Naturforschung A 75(3) (2020), 225 – 239, DOI: 10.1515/zna-2019-0332.

K. Ahmad, Z. Hanouf and A. Ishak, MHD Casson nanofluid flow past a wedge with Newtonian heating, The European Physical Journal Plus 132 (2017), Article number: 87, DOI: 10.1140/epjp/i2017-11356-5.

A. Al-Mudhaf and A. J. Chamkha, Similarity solutions for MHD thermosolutal Marangoni convection over a flat surface in the presence of heat generation or absorption effects, Heat and Mass Transfer 42 (2005), 112 – 121, DOI: 10.1007/s00231-004-0611-8.

H. A. Attia, Investigation of non-Newtonian micropolar fluid flow with uniform suction/blowing and heat generation, Turkish Journal of Engineering and Environmental Sciences 30(6) (2006), 359 – 365.

A. J. Chamkha, On laminar hydromagnetic mixed convection flow in a vertical channel with symmetric and asymmetric wall heating conditions, International Journal of Heat and Mass Transfer 45(12) (2002), 2509 – 2525, DOI: 10.1016/S0017-9310(01)00342-8.

A. J. Chamkha, T. Gro¸san and I. Pop, Fully developed free convection of a micropolar fluid in a vertical channel, International Communications in Heat and Mass Transfer 29(8) (2002), 1119 – 1127, DOI: 10.1016/S0735-1933(02)00440-2.

A. J. Chamkha and A.-R. A. Khaled, Hydromagnetic combined heat and mass transfer by natural convection from a permeable surface embedded in a fluid-saturated porous medium, International Journal of Numerical Methods for Heat & Fluid Flow 10(5) (2000), 455 – 477, DOI: 10.1108/09615530010338097.

A. S. Dogonchi and D. D. Ganji, Investigation of MHD nanofluid flow and heat transfer in a stretching/shrinking convergent/divergent channel considering thermal radiation, Journal of Molecular Liquids 220 (2016), 592 – 603, DOI: 10.1016/j.molliq.2016.05.022.

M. A. El-Aziz and A. A. Afify, influences of slip velocity and induced magnetic field on MHD stagnation-point flow and heat transfer of casson fluid over a stretching sheet, Mathematical Problems in Engineering 2018 (2018), Article ID 9402836, 11 pages, DOI: 10.1155/2018/9402836.

N. T. M. Eldabe and S. N. Sallam, Non-Darcy Couette flow through a porous medium of magnetohydro-dynamic visco-elastic fluid with heat and mass transfer, Canadian Journal of Physics 83(12) (2005), 1243 – 1265, DOI: 10.1139/P05-056.

N. T. M. Eldabe, G. M. Moatimid and H. S. Ali, Magnetohydrodynamic flow of non-Newtonian visco-elastic fluid through a porous medium near an accelerated plate, Canadian Journal of Physics 81(11) (2003), 1249 – 1269, DOI: 10.1139/p03-092.

E. O. Fatunmbi and A. T. Adeosun, Nonlinear radiative Eyring-Powell nanofluid flow along a vertical Riga plate with exponential varying viscosity and chemical reaction, International Communications in Heat and Mass Transfer 119 (2020), 104913, DOI: 10.1016/j.icheatmasstransfer.2020.104913.

R. S. R. Gorla, A. J. Chamkha and A. M. Rashad, Mixed convective boundary layer flow over a vertical wedge embedded in a porous medium saturated with a nanofluid: Natural convection dominated regime, Nanoscale Research Letters 6 (2011), 207, DOI: 10.1186/1556-276X-6-207.

M. Hameed and S. Nadeem, Unsteady MHD flow of a non-Newtonian fluid on a porous plate, Journal of Mathematical Analysis and Applications 325(1) (2007), 724 – 733, DOI: 10.1016/j.jmaa.2006.02.002.

T. Hayat, S. A. Shehzad and A. Alsaedi, Soret and Dufour effects on magnetohydrodynamic (MHD) flow of Casson fluid, Applied Mathematics and Mechanics 33 (2012), 1301 – 1312, DOI: 10.1007/s10483-012-1623-6.

T. Hussain, S. A. Shehzad, A. Alsaedi, T. Hayat and M. Ramzan, Flow of Casson nanofluid with viscous dissipation and convective conditions: A mathematical model, Journal of Central South University 22 (2015), 1132 – 1140, DOI: 10.1007/s11771-015-2625-4.

A. Hussanan, M. Z. Salleh, I. Khan and R. M. Tahar, Heat transfer in magnetohydrodynamic flow of a Casson fluid with porous medium and Newtonian heating, Journal of Nanofluids 6(4) (2017), 784 – 793, DOI: 10.1166/jon.2017.1359.

A. Hussanan, M. Z. Salleh, I. Khan and R. M. Tahar, Unsteady heat transfer flow of a casson fluid with newtonian heating and thermal radiation, Jurnal Teknologi 78 (2016), 1–7, DOI: 10.11113/jt.v78.8264.

S. M. Ibrahim, G. Lorenzini, P. V. Kumar and C. S. K. Raju, Influence of chemical reaction and heat source on dissipative MHD mixed convection flow of a Casson nanofluid over a nonlinear permeable stretching sheet, International Journal of Heat and Mass Transfer 111 (2017), 346 – 355, DOI: 10.1016/j.ijheatmasstransfer.2017.03.097.

T. Javed, M. Faisal and I. Ahmad, Dynamisms of solar radiation and prescribed heat sources on bidirectional flow of magnetized Eyring-Powell nanofluid, Case Studies in Thermal Engineering 21 (2020), 100689, DOI: 10.1016/j.csite.2020.100689.

M. Keimanesh, M. M. Rashidi, A. J. Chamkha and R. Jafari, Study of a third grade non-Newtonian fluid flow between two parallel plates using the multi-step differential transform method, Computers & Mathematics with Applications 62(8) (2011), 2871 – 2891, DOI: 10.1016/j.camwa.2011.07.054.

H. B. Keller, A new difference scheme for parabolic problems, in: Numerical Solution of Partial Differential Equations–II, Proceedings of the Second Symposium on the Numerical Solution of Partial Differential Equations, SYNSPADE 1970, University of Maryland, College Park, Maryland, May 11-15, 1970, 327 – 350 (1971), DOI: 10.1016/B978-0-12-358502-8.50014-1.

A. A. Khan, F. Zaib and A. Zaman, Effects of entropy generation on Powell Eyring fluid in a porous channel, Journal of the Brazilian Society of Mechanical Sciences and Engineering 39 (2017), 5027 – 5036, DOI: 10.1007/s40430-017-0881-y.

M. R. Krishnamurthy, B. C. Prasannakumara, B. J. Gireesha and R. S. R. Gorla, Effect of chemical reaction on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium, Engineering Science and Technology, an International Journal 19(1) (2016), 53 – 61, DOI: 10.1016/j.jestch.2015.06.010.

B. Krishnendu, H. Tasawar and A. Ahmed, Analytic solution for magnetohydrodynamic boundary layer flow of Casson fluid over a stretching/shrinking sheet with wall mass transfer, Chinese Physics B 22(2) (2013), 024702, DOI: 10.1088/1674-1056/22/2/024702.

P. S. Kumar and K. Gangadhar, Effect of chemical reaction on slip flow of MHD Casson fluid over a stretching sheet with heat and mass transfer, Advances in Applied Science Research 6(8) (2015), 205 – 223.

F. Mabood, S. Shateyi, M. M. Rashidi, E. Momoniat and N. Freidoonimehr, MHD stagnation point flow heat and mass transfer of nanofluids in porous medium with radiation, viscous dissipation and chemical reaction, Advanced Powder Technology 27(2) (2016), 742 – 749, DOI: 10.1016/j.apt.2016.02.033.

M. Y. Malik, I. Khan, A. Hussain and T. Salahuddin, Mixed convection flow of MHD Eyring-Powell nanofluid over a stretching sheet: A numerical study, AIP Advances 5 (2015), 117118, DOI: 10.1063/1.4935639.

M. Y. Malik, T. Salahuddin, A. Hussain and S. Bilal, MHD flow of tangent hyperbolic fluid over a stretching cylinder: Using Keller-Box method, Journal of Magnetism and Magnetic Materials 395 (2015), 271 – 276, DOI: 10.1016/j.jmmm.2015.07.097.

M. Nazeer, M. I. Khan, M. U. Rafiq and N. B. Khan, Numerical and scale analysis of Eyring-Powell nanofluid towards a magnetized stretched Riga surface with entropy generation and internal resistance, International Communications in Heat and Mass Transfer 119 (2020), 104968, DOI: 10.1016/j.icheatmasstransfer.2020.104968.

S. Pramanik, Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation, Ain Shams Engineering Journal 5(1) (2014), 205 – 212, DOI: 10.1016/j.asej.2013.05.003.

J. Rahimi, D. D. Ganji, M. Khaki and K. Hosseinzadeh, Solution of the boundary layer flow of an Eyring-Powell non-Newtonian fluid over a linear stretching sheet by collocation method, Alexandria Engineering Journal 56(4) (2017), 621 – 627, DOI: 10.1016/j.aej.2016.11.006.

C. S. K. Raju, N. Sandeep, V. Sugunamma, M. J. Babu and J. V. R. Reddy, Heat and mass transfer in magnetohydrodynamic Casson fluid over an exponentially permeable stretching surface, Engineering Science and Technology, an International Journal 19(1) (2016), 45 – 52, DOI: 10.1016/j.jestch.2015.05.010.

G. K. Ramesh, B. C. Prasannakumara, B. J. Gireesha and M. M. Rashidi, Casson fluid flow near the stagnation point over a stretching sheet with variable thickness and radiation, Journal of Applied Fluid Mechanics 9(3) (2016), 1115 – 1022, DOI: 10.18869/acadpub.jafm.68.228.24584.

K. U. Rehman, A. A. Khan, M. Y. Malik and O. D. Makinde, Thermophysical aspects of stagnation point magnetonanofluid flow yields by an inclined stretching cylindrical surface: a non-Newtonian fluid model, Journal of the Brazilian Society of Mechanical Sciences and Engineering 39 (2017), 3669 – 3682, DOI: 10.1007/s40430-017-0860-3.

G. Sarojamma and K. Vendabai, Boundary layer flow of a Casson nanofluid past a vertical exponentially stretching cylinder in the presence of a transverse magnetic field with internal heat generation/absorption, International Scholarly and Scientific Research & Innovation 9(1) (2015), 138 – 143.

M. Shojaeian and A. Ko¸sar, Convective heat transfer and entropy generation analysis on Newtonian and non-Newtonian fluid flows between parallel-plates under slip boundary conditions, International Journal of Heat and Mass Transfer 70 (2014), 664 – 673, DOI: 10.1016/j.ijheatmasstransfer.2013.11.020.

H. S. Takhar, A. J. Chamkha and G. Nath, MHD flow over a moving plate in a rotating fluid with magnetic field, Hall currents and free stream velocity, International Journal of Engineering Science 40(13) (2002), 1511 – 1527, DOI: 10.1016/S0020-7225(02)00016-2.

J. C. Umavathi, A. J. Chamkha, A. Mateen and A. Al-Mudhaf, Unsteady two-fluid flow and heat transfer in a horizontal channel, Heat and Mass Transfer 42 (2005), 81 – 90, DOI: 10.1007/s00231-004-0565-x.

N. Yilmaz, A. S. Bakhtiyarov and R. N. Ibragimov, Experimental investigation of Newtonian and non-Newtonian fluid flows in porous media, Mechanics Research Communications 36(5) (2009), 638 – 641, DOI: 10.1016/j.mechrescom.2009.01.012.

Downloads

Published

18-09-2023
CITATION

How to Cite

Hymavathi, D. (2023). Non-Newtonian Eyring-Powell-Casson Nanofluid Flow via Porous Medium: Numerical Analysis. Communications in Mathematics and Applications, 14(2), 685–705. https://doi.org/10.26713/cma.v14i2.1899

Issue

Section

Research Article