Viscous Dissipation Impact on Hydromagnetic Flow on a Stretching Surface: A Numerical Study

Authors

DOI:

https://doi.org/10.26713/cma.v14i1.1894

Keywords:

Magnetic field, Eckert number, Nanofluid, Stretching surface, Viscous Dissipation.

Abstract

. The influence of magnetic field and viscous dissipation on a non-Newtonian fluid flowing across a nonlinear stretching sheet is investigated in this investigation. Researchers use similarity transformations to make the governing nonlinear partial differential equations (PDE) into ordinary differential equations (ODE) and then solve them using the ND Solve code in Mathematica. In the process of enhance the values of Eckert number, the temperature profile gets enhanced, while the rise in magnetic parameter decreases the velocity boundary layer (BL) thickness. The applications of this investigation are found in several heating devices and industrial processes such as incandescent light bulbs, food production, and many more.

Downloads

Download data is not yet available.

References

M. S. Alam, M. Ali, M. A. Alim and M. J. H. Munshi, Unsteady boundary layer nanofluid flow and heat transfer along a porous stretching surface with magnetic field, AIP Conference Proceedings 1851 (2017), 020023, DOI: 10.1063/1.4984652.

M. Ali, M. A. Alim, R. Nasrin and M. S. Alam, Numerical analysis of heat and mass transfer along a stretching wedge surface, Journal of Naval Architecture and Marine Engineering 14(2) (2017), 135 – 144, DOI: 10.3329/jname.v14i2.30633.

M. Ali, M. A. Alim, R. Nasrin and M. S. Alam, Study the effect of chemical reaction and variable viscosity on free convection MHD radiating flow over an inclined plate bounded by porous medium, AIP Conference Proceedings 1754 (2016), 040009, DOI: 10.1063/1.4958369.

M. Ali, M. A. Alim, R. Nasrin, M. S. Alam and M. J. H. Munshi, Similarity solution of unsteady MHD boundary layer flow and heat transfer past a moving wedge in a nanofluid using the buongiorno model, Procedia Engineering 194 (2017), 407 – 413, DOI: 10.1016/j.proeng.2017.08.164.

T. C. Chaim, Hydromagnetic flow over a surface stretching with a power-law velocity, International Journal of Engineering Science 33(3) (1995), 429 – 435, DOI: 10.1016/0020-7225(94)00066-S.

A. J. Chamkha and A.-R. A. Khaled, Similarity solutions for hydromagnetic mixed convection heat and mass transfer for Hiemenz flow through porous media, International Journal of Numerical Methods for Heat & Fluid Flow 10(1) (2000), 94 – 115, DOI: 10.1108/09615530010306939.

J. Chamkha and C. Issa, Effects of heat generation/absorption and thermophoresis on hydromagnetic flow with heat and mass transfer over a flat surface, International Journal of Numerical Methods for Heat & Fluid Flow 10(4) (2000), 432 – 449, DOI: 10.1108/09615530010327404.

S. U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in: D. A. Siginer and H. P. Wang (eds.), Developments and Applications of Non-Newtonian Flows, ASME, New York, Vol. 66 (1995), 99 – 105, DOI: https://ecotert.com/pdf/196525_From_unt-edu.pdf.

R. Cortell, Viscous flow and heat transfer over a nonlinearly stretching sheet, Applied Mathematics and Computation 184(2) (2007), 864 – 873, DOI: 10.1016/j.amc.2006.06.077.

L. J. Crane, Flow past a stretching plate, Zeitschrift für angewandte Mathematik und Physik ZAMP 21(4) (1970), 645 – 647, DOI: 10.1007/BF01587695.

K. Das, Nanofluid flow over a non-linear permeable stretching sheet with partial slip, Journal of the Egyptian Mathematical Society 23(2) (2015), 451 – 456, DOI: 10.1016/j.joems.2014.06.014.

B. V. Derjaguin and Y. Yalamov, Theory of thermophoresis of large aerosol particles, Journal of Colloid Science 20(6) (1965), 555 – 570, DOI: 10.1016/0095-8522(65)90035-8.

H. M. Duwairi, Viscous and Joule heating effects on forced convection flow from radiate isothermal porous surfaces, International Journal of Numerical Methods for Heat & Fluid Flow 15(5) (2005), 429 – 440, DOI: 10.1108/09615530510593620.

T. Fang, C.-F. F. Lee and J. Zhang, The boundary layers of an unsteady incompressible stagnation-point flow with mass transfer, International Journal of Non-Linear Mechanics 46(7) (2011), 942 – 948, DOI: 10.1016/j.ijnonlinmec.2011.04.007.

B. Gebhart and J. Mollendorf, Viscous dissipation in external natural convection flows, Journal of Fluid Mechanics 38(1) (1969), 97 – 107, DOI: 10.1017/S0022112069000061.

S. K. Khan and E. Sanjayanand, Viscoelastic boundary layer flow and heat transfer over an exponential stretching sheet, International Journal of Heat and Mass Transfer 48(8) (2005), 1534 – 1542, DOI: 10.1016/j.ijheatmasstransfer.2004.10.032.

S. K. Khan, M. S. Abel and R. M. Sonth, Visco-elastic MHD flow, heat and mass transfer over a porous stretching sheet with dissipation of energy and stress work, Heat and Mass Transfer 40 (2003), 47 – 57, DOI: 10.1007/s00231-003-0428-x.

S.-J. Liao and I. Pop, Explicit analytic solution for similarity boundary layer equations, International Journal of Heat and Mass Transfer 47(1) (2004), 75 – 85, DOI: 10.1016/S0017-9310(03)00405-8.

G. Narender, S. Misra and K. Govardhan, Numerical solution of MHD nanofluid over a stretching surface with chemical reaction and viscous dissipation, Chemical Engineering Research Bulletin 21(1) (2020), 36 – 45, DOI: 10.3329/cerb.v21i1.47370.

A. Prathiba and A. V. Lakshimi, Exploration of the internal energy effect on 3d-casson fluid embedded by porous media over a rotating sheet, EJ-MATH - European Journal of Mathematics and Statistics 3(3) (2022), 1 – 12, DOI: 10.24018/ejmath.2022.3.3.111.

R. S. Raju, B. M. Reddy, M. M. Rashidi and R. S. R. Gorla, Application of finite element method to unsteady magnetohydrodynamic free-convection flow past a vertically inclined porous plate including thermal diffusion and diffusion thermo effects, Journal of Porous Media 19(8) (2016), 701 – 722, DOI: 10.1615/JPorMedia.v19.i8.40.

D. Ramya, R. S. Raju, J. A. Rao and A. J. Chamkha, Effects of velocity and thermal wall slip on magnetohydrodynamics (MHD) boundary layer viscous flow and heat transfer of a nanofluid over a non-linearly-stretching sheet: A numerical study, Propulsion and Power Research 7(2) (2018), 182 – 195, DOI: 10.1016/j.jppr.2018.04.003.

S. Sindhu and B. J. Gireesha, Flow of colloidal suspension and irreversibility analysis with aggregation kinematics of nanoparticles in a microchannel, Applied Mathematics and Mechanics 41 (2020), 1671 – 1684, DOI: 10.1007/s10483-020-2669-9.

A. Sriramalu, N. Kishan and A. J. Anand, Steady flow and heat transfer of a viscous incompressible fluid flow through porous medium over a stretching sheet, Journal of Energy, Heat and Mass Transfer 23 (2001), 483 – 495.

R. Tsai, A simple approach for evaluating the effect of wall suction and thermophoresis on aerosol particle deposition from a laminar flow over a flat plate, International Communications in Heat and Mass Transfer 26(2) (1999), 249 – 257, DOI: 10.1016/S0735-1933(99)00011-1.

Downloads

Published

09-05-2023
CITATION

How to Cite

Deepthi, V. V. L., Raju, R. S., & Narla, . V. K. (2023). Viscous Dissipation Impact on Hydromagnetic Flow on a Stretching Surface: A Numerical Study. Communications in Mathematics and Applications, 14(1), 283–294. https://doi.org/10.26713/cma.v14i1.1894

Issue

Section

Research Article