Bayesian Estimators of Dynamic Cumulative Residual Entropy for Pareto Type II Distribution

Authors

DOI:

https://doi.org/10.26713/cma.v13i3.1890

Keywords:

Bayesian estimation, Pareto type II distribution, Loss functions, Priors, Fisher information matrix

Abstract

In this paper, Pareto type II distribution is used to propose Bayes estimator of dynamic cumulative residual entropy. To calculate posterior risks, various informative and non-informative priors are used. Using different loss functions, Bayes estimators and associated posterior risks for the distribution have been calculated. Numerical computation is carried out with the help of a real data
set. In the last, Monte Carlo Simulation study and Graphical analysis are also given along with the conclusion drawn.

Downloads

Download data is not yet available.

References

A. M. Abd-Elfattah and A. H. Alharbey, Estimation of Lomax parameters based on generalized probability weighted moment, Journal of King Abdulaziz University – Science 22 (2010), 171 – 184, URL: https://www.kau.edu.sa/files/320/researches/58961_29252.pdf.

B. C. Arnold and S. J. Press, Bayesian inference for Pareto populations, Journal of Econometrics 21 (1983), 287 – 306, DOI: 10.1016/0304-4076(83)90047-7.

M. Asadi and Y. Zohrevand, On the dynamic cumulative residual entropy, Journal of Statistical Planning and Inference 137 (2007), 1931 – 1941, DOI: 10.1016/j.jspi.2006.06.035.

F. Belzunce, J. Navarro, J. M. Ruiz and Y. del Aguila, Some results on residual entropy function, Metrika 59 (2004), 147 – 161, DOI: 10.1007/s001840300276.

M. C. Bryson, Heavy-tailed distributions: Properties and tests, Technometrics 16(1) (1974), 61 – 68, DOI: 10.1080/00401706.1974.10489150.

N. Ebrahimi and F. Pellerey, New partial ordering of survival functions based on the notion of uncertainty, Journal of Applied Probability 32 (1995), 202 – 211, DOI: 10.2307/3214930.

N. Ebrahimi, How to measure uncertainty in the residual life distributions, Sankhya Series A 58 (1996), 48 – 56, URL: https://www.jstor.org/stable/25051082.

C. M. Harris, The Pareto distribution as a queue discipline, Operations Research 16 (1968), 307 – 313, URL: https://www.jstor.org/stable/168758.

A. S. Hassan and A. S. Al-Ghamdi, Optimum step stress accelerated life testing for Lomax distribution, Journal of Applied Sciences Research 5 (2009), 2153 – 2164.

N. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distribution, Vol. 1, 2nd edition, John Wiley, New York (1994).

K. S. Lomax, Business failures: Another example of the analysis of failure data, Journal of the American Statistical Association 49 (1954), 847 – 852, DOI: 10.2307/2281544.

P. Nasiri and S. Hosseini, Statistical inferences for Lomax distribution based on record values (bayesian and classical), Journal of Modern Applied Statistical Methods 11 (2012), 179 – 189, DOI: 10.22237/jmasm/1335845640.

J. Navarro, Y. D. Aguila and M. Asadi, Some new results on the cumulative residual entropy, Journal of Statistical Planning and Inference 140 (2010), 310 – 322, DOI: 10.1016/j.jspi.2009.07.015.

M. Rao, Y. Chen, B. C. Vemuri and F. Wang, Cumulative residual entropy: A new measure of information, IEEE Transactions on Information Theory 50(6) (2004), 1220 – 1228, DOI: 10.1109/TIT.2004.828057.

C. Ren, D. Sun and D. K. Dey, Comparison of Bayesian and frequentist estimation and prediction for a normal population, Sankhya: The Indian Journal of Statistics 66(4) (2004), 678 – 706, URL: https://www.jstor.org/stable/25053396.

K. R. Renjini, E. I. A. Sathar and G. Rajesh, Bayesian estimation of dynamic cumulative residual entropy for classical Pareto distribution, American Journal of Mathematical and Management Sciences 37(1) (2018), 1 – 13, DOI: 10.1080/01966324.2017.1364184.

C. E. Shannon, A mathematical theory of communication, Bell System Technical Journal 27 (1948), 379 – 423, DOI: 10.1002/j.1538-7305.1948.tb01338.x.

S. K. Singh, U. Singh and A. S. Yadav, Bayesian estimation of Lomax distribution under type-II hybrid censored data using Lindley’s approximation method, International Journal of Data Science 2(4) (2017), 352 – 368, DOI: 10.1504/IJDS.2017.088104.

S. K. Upadhyay, N. Vasishta and A. F. M. Smith, Bayes inference in life testing and reliability via Markov chain Monte Carlo simulation, Sankhya: The Indian Journal of Statistics, Series A 63 (2001), 15 – 40, URL: https://www.jstor.org/stable/25051337.

Downloads

Published

29-11-2022
CITATION

How to Cite

Savita, & Kumar, R. (2022). Bayesian Estimators of Dynamic Cumulative Residual Entropy for Pareto Type II Distribution. Communications in Mathematics and Applications, 13(3), 1013–1026. https://doi.org/10.26713/cma.v13i3.1890

Issue

Section

Research Article