Some Results on Fixed Sets and Kernel Sets of Permuting \(n\)-\((f ,g)\)-derivation of Lattices

Authors

  • Pongsatorn Chotchaya Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
  • Utsanee Leerawat Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand https://orcid.org/0000-0001-8283-2596

DOI:

https://doi.org/10.26713/cma.v13i3.1870

Keywords:

Lattice, Derivation, \((f,g)\)-derivation, Permuting \(n\)-\((f,g)\)-derivation, Fixed set, Kernel set

Abstract

In this paper, we introduce a multivariate fixed set, a partial fixed set, a multivariate kernel set and a partial kernel set of permuting \(n\)-\((f , g)\)-derivation in lattices, and investigate some related properties. We also give some conditions under which these sets are sublattices and ideals.

Downloads

Download data is not yet available.

References

Y. Ceven and M. A. Ozturk, On f -derivations of lattices, Bulletin of the Korean Mathematical Society 45(4) (2008), 701 – 707, DOI: 10.4134/BKMS.2008.45.4.701.

Y. Çeven, Symmetric bi-derivations of lattices, Quaestiones Mathematicae 32 (2009), 241 – 245, DOI: 10.2989/QM.2009.32.2.6.799.

M. A. Chaudhry and Z. Ullah, On generalized (α,β)-derivations on lattices, Quaestiones Mathematicae 34(4) (2011), 417 – 424, DOI: 10.2989/16073606.2011.640439.

L. Ferrari, On derivations of lattices, Pure Mathematics and Applications 12 (2001), 365 – 382, URL: http://web.math.unifi.it/users/ferrari/derlat.pdf.

S. Harmaitree and U. Leerawat, On f -derivations in lattices, Far East Journal of Mathematical Sciences 51(1) (2011), 27 – 40, URL: http://www.pphmj.com/abstract/5779.html.

U. Leerawat and P. Chotchaya, On permuting n-(f , g)-derivations of lattices, International Journal of Mathematics and Computer Science 17(1) (2022), 485 – 497, URL: http://ijmcs.future-in-tech.net/17.1/R-Leerawat-Chotchaya.pdf.

R. Lidl and G. Pilz, Applied Abstract Algebra, Springer-Verlag, Inc., New York, USA (1984), DOI: 10.1007/978-1-4615-6465-2.

M. A. Öztürk, H. Yazarl and K. H. Kim, Permuting tri-derivations in lattices, Quaestiones Mathematicae 32 (2009), 415 – 425, DOI: 10.2989/QM.2009.32.3.10.911.

G. Szász, Derivations of lattices, Acta Scientiarum Mathematicarum (Szeged) 37 (1975), 149 – 154.

J. Wang, Y. Jun, X. Xin and Y. Zou, On derivations of bounded hyperlattices, Journal of Mathematical Research with Applications 36 (2016), 151 – 161, DOI: 10.3770/j.issn:2095-2651.2016.02.003.

X. L. Xin, T. Y. Liu and J. H. Lu, On derivations of lattices, Information Sciences 178(2) (2008), 307 – 316, DOI: 10.1016/j.ins.2007.08.018.

X. L. Xin, The fixed set of a derivation in lattices, Fixed Point Theory Applications (A Springer Open Journal) 218 (2012), DOI: 10.1186/16871812-2012-218.

H. Yazarli and M. A. Ozturk, Permuting tri-f -derivations in lattices, Communications of the Korean Mathematical Society 26(1) (2011), 13 – 21, DOI: 10.4134/CKMS.2011.26.1.013.

Downloads

Published

29-11-2022
CITATION

How to Cite

Chotchaya, P., & Leerawat, U. (2022). Some Results on Fixed Sets and Kernel Sets of Permuting \(n\)-\((f ,g)\)-derivation of Lattices. Communications in Mathematics and Applications, 13(3), 1075–1086. https://doi.org/10.26713/cma.v13i3.1870

Issue

Section

Research Article