\(\Delta^m\)-Ideal Convergence of Generalized Difference Sequences in Neutrosophic Normed Spaces
DOI:
https://doi.org/10.26713/cma.v13i3.1869Keywords:
Neutrosophic normed spaces, Statistical convergence, Statistical cauchy, Difference sequence, Generalized difference sequence, I-convergence and I-cauchyAbstract
The objective of this paper is to introduce the perception of ideal convergence of generalized difference sequences in Neutrosophic Normed Spaces. We defined the concepts of \(\Delta^m\)-\(I_N\)-Cauchy and \(\Delta^m\)-\(I_N\)-completeness for generalized difference sequences in Neutrosophic Normed Spaces (briefly known as N.N.S). Another, closely related concept \(\Delta^m\)-\(I_N^\ast\)-convergence, \(\Delta^m\)-\(I_N^\ast\)-Cauchy and \(\Delta^m\)-\(I_N^\ast\)-completeness in N.N.S are also defined. Later, we establish some relations among these perceptions which shows that this method of convergence is more generalized.
Downloads
References
T. Bera and N. K. Mahapatra, On neutrosophic soft linear spaces, Fuzzy Information and Engineering 9(3) (2017), 299 – 324, DOI: 10.1016/j.fiae.2017.09.004.
T. Bera and N. K. Mahapatra, Neutrosophic soft normed linear spaces, Neutrosophic Sets and Systems 23 (2018), 52 – 71, URL: http://fs.unm.edu/NSS2/index.php/111/article/view/385/324.
M. Chawla, V. Kumar and M. S. Saroa, Some remarks on statistical summability of order α defined by generalized De la Vallée-Pousin Mean, Boletim da Sociedade Paranaense de Matemática 33(1) (2015), 145 – 154, DOI: 10.5269/bspm.v33i1.22743.
M. Chawla, M. S. Saroa and V. Kumar, On Λ-statistical convergence of order α in random 2-normed space, Miskolc Mathematical Notes 16(2) (2013), 1003 – 1015, DOI: 10.18514/MMN.2015.821.
K. Demirci, I -limit superior and limit inferior, Mathematical Communications 6(2) (2001), 165 – 172.
M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow Journal of Mathematics 21(4) (1995), 377 – 386.
M. Et and F. Nuray, Delta (m)-statistical convergence, Indian Journal of Pure & Applied Mathematics 32(6) (2001), 961 – 969, URL: https://avesis.cumhuriyet.edu.tr/yayin/53352728-6e76-40a9-b3cc-c50eb20c1fe3/deltam-statistical-convergence.
H. Fast, Sur la convergence statistique, Colloquium Mathematicae 2(3-4) (1951), 241 – 244, URL: http://eudml.org/doc/209960.
B. Hazarika, V. Kumar and B. Lafuerza-Guillén, Generalized ideal convergence in intuitionistic fuzzy normed linear spaces, Filomat 27(5) (2013), 811 – 820, URL: https://www.jstor.org/stable/24896411.
S. Karakus and K. Demırcı, Statistical convergence of double sequences on probabilistic normed spaces, International Journal of Mathematics and Mathematical Sciences 2007 (2007), Article ID 014737, 11 pages, DOI: 10.1155/2007/14737.
S. Karakus, K. Demirci and O. Duman, Statistical convergence on intuitionistic fuzzy normed spaces, Chaos, Solitons & Fractals 35(4) (2008), 763 – 769, DOI: 10.1016/j.chaos.2006.05.046.
S. Karakus, K. Demirci and O. Duman, Statistical convergence on intuitionistic fuzzy normed spaces, Chaos, Solitons and Fractals 35(4) (2008), 763 – 769, DOI: 10.1016/j.chaos.2006.05.046.
M. Kiri¸sci and N. ¸Sim¸sek, Neutrosophic metric spaces, Mathematical Sciences 14(3) (2020), 241 – 248.
H. Kizmaz, On certain sequence spaces, Canadian Mathematical Bulletin 24(2) (1981), 169 – 176, DOI: 10.4153/CMB-1981-027-5.
A. Komisarski, Pointwise I -convergence and I -convergence in measure of sequences of functions, Journal of Mathematical Analysis and Applications 340(2) (2008), 770 – 779, DOI: 10.1016/j.jmaa.2007.09.016.
P. Kostyrko, M. Mácaj, T. Šalát and M. Sleziak, I -convergence and extremal I -limit points, Mathematica Slovaca 55(4) (2005), 443 – 464, URL: http://hdl.handle.net/10338.dmlcz/132906.
V. Kumar, On I and I-convergence of double sequences, Mathematical Communications 12(2) (2007), 171 – 181, URL: https://hrcak.srce.hr/17958.
V. Kumar and B. Lafuerza-Guillén, On ideal convergence of double sequences in probabilistic normed spaces, Acta Mathematica Sinica, English Series 28(8) (2012), 1689 – 1700, DOI: 10.1007/s10114-012-9321-1.
F. Móricz, Statistical convergence of multiple sequences, Archiv der Mathematik 81(1) (2003), 82 – 89, DOI: 10.1007/s00013-003-0506-9.
S. A. Mohiuddine and Q. M. D. Lohani, On generalized statistical convergence in intuitionistic fuzzy normed space, Chaos, Solitons & Fractals 42(3) (2009), 1731 – 1737, DOI: 10.1016/j.chaos.2009.03.086.
M. Mursaleen, On statistical convergence in random 2-normed spaces, Acta Scientiarum Mathematicarum 76(1-2) (2010), 101 – 109, DOI: 10.1007/BF03549823.
M. Mursaleen, S.A. Mohiuddine and O. H. H. Edely, On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Computers & Mathematics with Applications 59(2) (2010), 603 – 611, DOI: 10.1016/j.camwa.2009.11.002.
Mursaleen and O. H. H. Edely, Statistical convergence of double sequences, Journal of Mathematical Analysis and Applications 288(1) (2003), 223 – 231, DOI: 10.1016/j.jmaa.2003.08.004.
M. Mursaleen and S. A. Mohiuddine, Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos, Solitons & Fractals 41(5) (2009), 2414 – 2421, DOI: 10.1016/j.chaos.2008.09.018.
J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals 22(5) (2004), 1039 – 1046, DOI: 10.1016/j.chaos.2004.02.051.
Reena, Meenakshi and V. Kumar, Generalized statistical convergence of order α in random n-normed space, Advances and Applications in Mathematical Sciences 18(8) (2019), 715 – 729.
A. ¸Sahiner, M. Gürdal and F. K. Düden, Triple sequences and their statistical convergence, Selcuk Journal of Applied Mathematics 8(2) (2007), 49 – 55, URL: http://acikerisimarsiv.selcuk.edu.tr:8080/xmlui/handle/123456789/3847.
T. Šalát, On statistically convergent sequences of real numbers, Mathematica Slovaca 30(2) (1980), 139 – 150, URL: http://hdl.handle.net/10338.dmlcz/136236.
B. Schweizer and A. Sklar, Statistical metric spaces, Pacific Journal of Mathematics 10(1) (1960), 313 – 334, URL: https://msp.org/pjm/1960/10-1/pjm-v10-n1-s.pdf#page=315.
F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, International Journal of Pure and Applied Mathematics 24(3) (2005), 287.
H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloquium Mathematicum 2(1) (1951), 73 – 74.
B. Yu and X.-H. Yuan, The normal intuitionistic fuzzy subgroups, in: 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems 1, IEEE, 210 – 214 (2010).
L. A. Zadeh, Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems, Series: Advances in Fuzzy Systems — Applications and Theory: Volume 6, by L. A. Lotfi, World Scientific, (1996), DOI: 10.1142/2895.
A. Zygmund, On the convergence of lacunary trigonometric series, Fundamenta Mathematicae 16(1) (1930), 90 – 107, URL: http://eudml.org/doc/212510.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.