\(\Delta^m\)-Ideal Convergence of Generalized Difference Sequences in Neutrosophic Normed Spaces

Authors

DOI:

https://doi.org/10.26713/cma.v13i3.1869

Keywords:

Neutrosophic normed spaces, Statistical convergence, Statistical cauchy, Difference sequence, Generalized difference sequence, I-convergence and I-cauchy

Abstract

The objective of this paper is to introduce the perception of ideal convergence of generalized difference sequences in Neutrosophic Normed Spaces. We defined the concepts of \(\Delta^m\)-\(I_N\)-Cauchy and \(\Delta^m\)-\(I_N\)-completeness for generalized difference sequences in Neutrosophic Normed Spaces (briefly known as N.N.S). Another, closely related concept \(\Delta^m\)-\(I_N^\ast\)-convergence, \(\Delta^m\)-\(I_N^\ast\)-Cauchy and \(\Delta^m\)-\(I_N^\ast\)-completeness in N.N.S are also defined. Later, we establish some relations among these perceptions which shows that this method of convergence is more generalized.

Downloads

Download data is not yet available.

References

T. Bera and N. K. Mahapatra, On neutrosophic soft linear spaces, Fuzzy Information and Engineering 9(3) (2017), 299 – 324, DOI: 10.1016/j.fiae.2017.09.004.

T. Bera and N. K. Mahapatra, Neutrosophic soft normed linear spaces, Neutrosophic Sets and Systems 23 (2018), 52 – 71, URL: http://fs.unm.edu/NSS2/index.php/111/article/view/385/324.

M. Chawla, V. Kumar and M. S. Saroa, Some remarks on statistical summability of order α defined by generalized De la Vallée-Pousin Mean, Boletim da Sociedade Paranaense de Matemática 33(1) (2015), 145 – 154, DOI: 10.5269/bspm.v33i1.22743.

M. Chawla, M. S. Saroa and V. Kumar, On Λ-statistical convergence of order α in random 2-normed space, Miskolc Mathematical Notes 16(2) (2013), 1003 – 1015, DOI: 10.18514/MMN.2015.821.

K. Demirci, I -limit superior and limit inferior, Mathematical Communications 6(2) (2001), 165 – 172.

M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow Journal of Mathematics 21(4) (1995), 377 – 386.

M. Et and F. Nuray, Delta (m)-statistical convergence, Indian Journal of Pure & Applied Mathematics 32(6) (2001), 961 – 969, URL: https://avesis.cumhuriyet.edu.tr/yayin/53352728-6e76-40a9-b3cc-c50eb20c1fe3/deltam-statistical-convergence.

H. Fast, Sur la convergence statistique, Colloquium Mathematicae 2(3-4) (1951), 241 – 244, URL: http://eudml.org/doc/209960.

B. Hazarika, V. Kumar and B. Lafuerza-Guillén, Generalized ideal convergence in intuitionistic fuzzy normed linear spaces, Filomat 27(5) (2013), 811 – 820, URL: https://www.jstor.org/stable/24896411.

S. Karakus and K. Demırcı, Statistical convergence of double sequences on probabilistic normed spaces, International Journal of Mathematics and Mathematical Sciences 2007 (2007), Article ID 014737, 11 pages, DOI: 10.1155/2007/14737.

S. Karakus, K. Demirci and O. Duman, Statistical convergence on intuitionistic fuzzy normed spaces, Chaos, Solitons & Fractals 35(4) (2008), 763 – 769, DOI: 10.1016/j.chaos.2006.05.046.

S. Karakus, K. Demirci and O. Duman, Statistical convergence on intuitionistic fuzzy normed spaces, Chaos, Solitons and Fractals 35(4) (2008), 763 – 769, DOI: 10.1016/j.chaos.2006.05.046.

M. Kiri¸sci and N. ¸Sim¸sek, Neutrosophic metric spaces, Mathematical Sciences 14(3) (2020), 241 – 248.

H. Kizmaz, On certain sequence spaces, Canadian Mathematical Bulletin 24(2) (1981), 169 – 176, DOI: 10.4153/CMB-1981-027-5.

A. Komisarski, Pointwise I -convergence and I -convergence in measure of sequences of functions, Journal of Mathematical Analysis and Applications 340(2) (2008), 770 – 779, DOI: 10.1016/j.jmaa.2007.09.016.

P. Kostyrko, M. Mácaj, T. Šalát and M. Sleziak, I -convergence and extremal I -limit points, Mathematica Slovaca 55(4) (2005), 443 – 464, URL: http://hdl.handle.net/10338.dmlcz/132906.

V. Kumar, On I and I-convergence of double sequences, Mathematical Communications 12(2) (2007), 171 – 181, URL: https://hrcak.srce.hr/17958.

V. Kumar and B. Lafuerza-Guillén, On ideal convergence of double sequences in probabilistic normed spaces, Acta Mathematica Sinica, English Series 28(8) (2012), 1689 – 1700, DOI: 10.1007/s10114-012-9321-1.

F. Móricz, Statistical convergence of multiple sequences, Archiv der Mathematik 81(1) (2003), 82 – 89, DOI: 10.1007/s00013-003-0506-9.

S. A. Mohiuddine and Q. M. D. Lohani, On generalized statistical convergence in intuitionistic fuzzy normed space, Chaos, Solitons & Fractals 42(3) (2009), 1731 – 1737, DOI: 10.1016/j.chaos.2009.03.086.

M. Mursaleen, On statistical convergence in random 2-normed spaces, Acta Scientiarum Mathematicarum 76(1-2) (2010), 101 – 109, DOI: 10.1007/BF03549823.

M. Mursaleen, S.A. Mohiuddine and O. H. H. Edely, On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Computers & Mathematics with Applications 59(2) (2010), 603 – 611, DOI: 10.1016/j.camwa.2009.11.002.

Mursaleen and O. H. H. Edely, Statistical convergence of double sequences, Journal of Mathematical Analysis and Applications 288(1) (2003), 223 – 231, DOI: 10.1016/j.jmaa.2003.08.004.

M. Mursaleen and S. A. Mohiuddine, Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos, Solitons & Fractals 41(5) (2009), 2414 – 2421, DOI: 10.1016/j.chaos.2008.09.018.

J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals 22(5) (2004), 1039 – 1046, DOI: 10.1016/j.chaos.2004.02.051.

Reena, Meenakshi and V. Kumar, Generalized statistical convergence of order α in random n-normed space, Advances and Applications in Mathematical Sciences 18(8) (2019), 715 – 729.

A. ¸Sahiner, M. Gürdal and F. K. Düden, Triple sequences and their statistical convergence, Selcuk Journal of Applied Mathematics 8(2) (2007), 49 – 55, URL: http://acikerisimarsiv.selcuk.edu.tr:8080/xmlui/handle/123456789/3847.

T. Šalát, On statistically convergent sequences of real numbers, Mathematica Slovaca 30(2) (1980), 139 – 150, URL: http://hdl.handle.net/10338.dmlcz/136236.

B. Schweizer and A. Sklar, Statistical metric spaces, Pacific Journal of Mathematics 10(1) (1960), 313 – 334, URL: https://msp.org/pjm/1960/10-1/pjm-v10-n1-s.pdf#page=315.

F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, International Journal of Pure and Applied Mathematics 24(3) (2005), 287.

H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloquium Mathematicum 2(1) (1951), 73 – 74.

B. Yu and X.-H. Yuan, The normal intuitionistic fuzzy subgroups, in: 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems 1, IEEE, 210 – 214 (2010).

L. A. Zadeh, Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems, Series: Advances in Fuzzy Systems — Applications and Theory: Volume 6, by L. A. Lotfi, World Scientific, (1996), DOI: 10.1142/2895.

A. Zygmund, On the convergence of lacunary trigonometric series, Fundamenta Mathematicae 16(1) (1930), 90 – 107, URL: http://eudml.org/doc/212510.

Downloads

Published

29-11-2022
CITATION

How to Cite

Kaur, G., & Meenakshi. (2022). \(\Delta^m\)-Ideal Convergence of Generalized Difference Sequences in Neutrosophic Normed Spaces. Communications in Mathematics and Applications, 13(3), 1181–1196. https://doi.org/10.26713/cma.v13i3.1869

Issue

Section

Research Article