Some Fixed Point Theorems for \((\alpha,\beta,z)\)-Contraction Mapping under Simulation Functions in Banach Space

Authors

  • Snehlata Dwivedi Department of Mathematics, Dr. C. V. Raman University, Kargi Road, Kota, Bilaspur, Chhattisgarh, India
  • Urmila Mishra Department of Mathematics, Vishwavidyalaya Engineering College, Lakhanpur-Ambikapur, Chhatisgarh, India https://orcid.org/0000-0003-4353-1269
  • A.K. Dubey Department of Applied Mathematics, Bhilai Institute of Technology, Bhilai House, Durg, Chhattisgarh, India https://orcid.org/0000-0001-5831-3817
  • M.D. Pandey Department of Applied Mathematics, Bhilai Institute of Technology, Bhilai House, Durg, Chhattisgarh, India https://orcid.org/0000-0003-3833-5247

DOI:

https://doi.org/10.26713/cma.v14i1.1828

Keywords:

Banach space, Fixed point, \((\alpha ,\beta ,z)\)-admissible mapping, Simulation functions

Abstract

In this paper, we prove some fixed point results in the setting of a Banach space via a cyclic \((\alpha ,\beta ,z)\)-admissible mapping imbedded in simulation function. Our results extend and generalize some well known results in the existing literature.

Downloads

Download data is not yet available.

References

S. A. Alizadeh, F. Moradlou and P. Salimi, Some fixed point results for (α,β)-(ψ,φ)-contractive mappings, Filomat 28(3) (2014), 635 – 647, DOI: 10.2298/Fil1403635a.

H. H. Alsulami, E. Karapınar, F. Khojasteh and A.-F. Roldán-López-de-Hierro, A proposal to the study of contractions in quasi-metric spaces, Discrete Dynamics in Nature and Society 2014 (2014), Article ID 269286, DOI: 10.1155/2014/269286.

E. Ameer, M. Arshad, D. Y. Shin and S. Yun, Common fixed point theorems of generalized multivalued (ψ,φ)-contractions in complete metric spaces with application, Mathematics 7(2) (2019), 194, DOI: 10.3390/math7020194.

H. Argoubi, B. Samet and C. Vetro, Nonlinear contractions involving simulation functions in a metric space with a partial order, Journal of Nonlinear Sciences and Applications 8(6) (2015), 1082 – 1094, DOI: 10.22436/jnsa.008.06.18.

S.-H. Cho, Fixed point theorems for (α,β)-z-contractions in metric spaces, International Journal of Mathematical Analysis 13(4) (2019), 161 – 174, DOI: 10.12988/ijma.2019.9318.

E. Karapınar, Fixed point results via simulations functions, Filomt 30(8) (2016), 2343 – 2350, DOI: 10.2298/FIL1608343k.

F. Khojasteh, S. Shukla and S. Radenovic, A new approach to the study of fixed point theory for simulation functions, Filomat 29(6) (2015), 1189 – 1194, DOI: 10.2298/FIL1506189k.

T. Mani, R. Krishnakumar and D. Dhamodharan, Fixed point of (α,β,Z)-Contraction mapping under simulation functions in Banach space, Malaya Journal of Matematik 9(1) (2001), 745 – 750, DOI: 10.26637/MJM0901/0131.

A.-F. Roldán-López-de-Hierro, E. Karapınar, C. Roldán-López-de-Hierro and J. Martínez-Moreno, Coincidence point theorems on metric spaces via simulation functions, Journal of Computational and Applied Mathematics 275 (2015), 345 – 355, DOI: 10.1016/j.cam.2014.07.011.

Downloads

Published

09-05-2023
CITATION

How to Cite

Dwivedi, S., Mishra, U., Dubey, A., & Pandey, M. (2023). Some Fixed Point Theorems for \((\alpha,\beta,z)\)-Contraction Mapping under Simulation Functions in Banach Space. Communications in Mathematics and Applications, 14(1), 1–7. https://doi.org/10.26713/cma.v14i1.1828

Issue

Section

Research Article