Symmetric Division Degree Invariants of Join Total and Mid Graphs

Authors

  • P. Murugarajan Department of Mathematics, Velammal Institute of Technology, Chennai 601204, Tamil Nadu, India

DOI:

https://doi.org/10.26713/cma.v14i1.1812

Keywords:

Degree, Join total graph, Mid graph, Symmetric division deg invariant, Samundi invariant

Abstract

The symmetric division degree (SDD) invariant is one of the 200 discrete Adriatic indices introduced several years ago. This SDD invariant has already been proven a valuable invariant in the QSAR (Quantitative Structure Activity Relationship) and QSPR (Quantitative Structure Property Relationship) studies. In this article, we present the bounds for SDD invariant of join total graph and SDD invariant of mid graphs.

Downloads

Download data is not yet available.

References

R. Aruldoss and P. Murugarajan, Upper bounds for symmetric division deg index of graphs, South East Asian Journal of Mathematics and Mathematical Sciences 16 (2020), 157 – 162, URL: https://rsmams.org/journals/articleinfo.php?articleid=447&tag=seajmams.

A. T. Balaban, Highly discriminating distance-based topological index, Chemical Physics Letters 89 (1982), 399 – 404, DOI: 10.1016/0009-2614(82)80009-2.

J. Devillers and A. T. Balaban (editor), Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and Breach Science Publishers, Amsterdam, The Netherlands, x + 811pp. (1999).

B. Furtula, K. Ch. Das and I. Gutman, Comparative analysis of symmetric division deg index as potentially useful molecular descriptor, International Journal of Quantum Chemistry 118 (2018), e25659, DOI: 10.1002/qua.25659.

C. K. Gupta, V. Lokesha, B. S. Shetty and P. S. Ranjini, Graph operations on the symmetric division deg invariant of graphs, Palestine Journal of Mathematics 6(1) (2017), 280 – 286, URL: https://pjm.ppu.edu/sites/default/files/papers/PJM_MAR_2017_32_0.pdf.

C. K. Gupta, V. Lokesha, B. S. Shetty and P. S. Ranjini, On the symmetric division deg index of graph, Southeast Asian Bulletin of Mathematics 40 (2016), 59 – 80, URL: http://www.seams-bull-math.ynu.edu.cn/downloadfile.jsp?filemenu=_201601&filename=06_40(1).pdf.

I. Gutman and N. Trinajstic, Graph theory and molecular orbitals. Total ϕ-electron energy of alternant hydrocarbons, Chemical Physics Letters 17 (1972), 535 – 538, DOI: 10.1016/0009-2614(72)85099-1.

M. Karelson, Molecular Descriptors in QSAR/QSPR, Wiley-Interscience, 448 pp., New York (2000), URL: https://www.wiley.com/en-us/Molecular+Descriptors+in+QSAR+QSPR+-p-9780471351689.

H. Kober, On the arithmetic and geometric means and on Hölder’s inequality, Proceedings of the American Mathematical Society 9 (1958), 452 – 459, DOI: 10.1090/S0002-9939-1958-0093564-7.

G. Mohanappriya and D. Vijayalakshmi, Symmetric division degree index and inverse sum index of transformation graph, Journal of Physics: Conference Series 1139 (2018), 012048, DOI: 10.1088/1742-6596/1139/1/012048.

P. Murugarajan and R. Aruldoss, Lower bounds for symmetric division degree invariant of graphs, International Journal of Mathematics Trends and Technology 68(4) (2022), 38 – 42, DOI: 10.14445/22315373/IJMTT-V68I4P507.

S. Nikolic, G. Kovacevic, A. Milicevic and N. Trinajstic, The Zagreb indices 30 years after, Croatica Chemica Acta 76 (2003), 113 – 124, URL: https://www.cmm.ki.si/~FAMNIT-knjiga/wwwANG/web-pages/CCA_76_2003_113-124_nikolic[1].pdf.

J. L. Palacios, New upper bounds for the symmetric division deg index of graphs, Discrete Mathematics Letters 2 (2019), 52 – 56, URL: http://www.dmlett.com/archive/DML19_v2_p.52_56.pdf.

G. Pólya and G. Szegö, Problems and Theorems in Analysis, Springer-Verlag, Berlin (1972), DOI: 10.1007/978-1-4757-1640-5.

J. Radon, Theorie und anwendungen der absolut additiven mengenfunktionen, Hölder, Wien, 144 pp. (1913) (in German).

M. Randic, Characterization of molecular branching, Journal of American Chemical Society 97 (1975), 6609 – 6615, DOI: 10.1021/ja00856a001.

B. C. Rennie, On a class of inequalities, Journal of the Australian Mathematical Society 3(1963), 442 – 448, DOI: 10.1017/S1446788700039057.

R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, WILEY-VCH Verlag GmbH, Weinheim (2000), DOI: 10.1002/9783527613106.

A. Vasilyev, Upper and lower bounds of symmetric division deg index, Iranian Journal of Mathematical Chemistry 5(2) (2014), 91 – 98, DOI: 10.22052/ijmc.2014.7357.

D. Vukicevic and M. Gašperov, Bond additive modeling 1. Adriatic indices, Croatica Chemica Acta 83 (2010), 243 – 260, URL: https://hrcak.srce.hr/file/93215.

H. Wiener, Structural determination of paraffin boiling points, Journal of the American Chemical Society 69 (1947), 17 – 20, DOI: 10.1021/ja01193a005.

Downloads

Published

09-05-2023
CITATION

How to Cite

Murugarajan, P. (2023). Symmetric Division Degree Invariants of Join Total and Mid Graphs. Communications in Mathematics and Applications, 14(1), 105–115. https://doi.org/10.26713/cma.v14i1.1812

Issue

Section

Research Article