Some Identities of Dual Mersenne Numbers

Authors

DOI:

https://doi.org/10.26713/cma.v13i3.1776

Keywords:

Mersenne sequence, Dual Mersenne number, Dual Jacobsthal number, Dual Jacobsthal-Lucas number

Abstract

The aim of this paper is to introduce the dual forms of the Mersenne, Jacobsthal and Jacobsthal-Lucas numbers which are called dual Mersenne, dual Jacobsthal and dual Jacobsthal-Lucas numbers. We give the widely known identities like, Binet to generalize these sequences, Catalan, and Cassini identities along with some useful properties of these dual sequences. We also show that identities of the dual forms of these sequences have a strong relation with their identities in their normal forms. We added the negative subscripts of dual Mersenne numbers. Finally, we show the relation of dual Mersenne numbers with dual Jacobsthal and dual Jacobsthal-Lucas numbers.

Downloads

Download data is not yet available.

References

D. Aggarwal, A. Joux, A. Prakash and M. Santha, A New Public-Key Cryptosystem via Mersenne Numbers, in: H. Shacham and A. Boldyreva (eds.), Advances in Cryptology – CRYPTO 2018 (CRYPTO 2018), Lecture Notes in Computer Science, Vol. 10993, Springer, Cham. (2018), DOI: 10.1007/978-3-319-96878-0_16.

P. Catarino, C. Helena and P. Vasco, On the Mersenne sequence, Annales Mathematicae et Informaticae 46 (2016), 37 – 53, URL: http://publikacio.uni-eszterhazy.hu/3253/1/AMI_46_from37to53.pdf.

M. A. Clifford, Preliminary sketch of bi-quaternions, Proceedings of the London Mathematical Society 4 (1873), 381 – 395, DOI: 10.1112/plms/s1-4.1.381.

A. Dasdemir, Mersenne, Jacobsthal, and Jacobsthal-Lucas numbers with negative subscripts, Acta Mathematica Universitatis Comenianae LXXXVIII (2019), 145 – 156, URL: http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/906/645.

A. Dasdemir and G. Bilgici, Gaussian Mersenne numbers and generalized Mersenne quaternions, Notes on Number Theory and Discrete Mathematics 25 (2019), 87 – 96, DOI: 10.7546/nntdm.2019.25.3.87-96.

T. Goy, On new identities for Mersenne numbers, Applied Mathematics E-Notes 18 (2018), 100 – 105, URL: https://www.emis.de/journals/AMEN/2018/AMEN-170424.pdf.

I. A. Güven and S. K. Nurkan, A new approach to Fibonacchi, Lucas numbers and dual vectors, Advances in Applied Clifford Algebras 25(1) (2015), 577 – 590, DOI: 10.1007/s00006-014-0516-7.

S. K. Nurkan and I. A. Güven, Dual Fibonacci quaternions, Advances in Applied Clifford Algebras 25(1) (2015), 403 – 414, DOI: 10.1007/s00006-014-0488-7.

Downloads

Published

29-11-2022
CITATION

How to Cite

Nukran, S. K., & Gürgil, İbrahim. (2022). Some Identities of Dual Mersenne Numbers. Communications in Mathematics and Applications, 13(3), 1129–1141. https://doi.org/10.26713/cma.v13i3.1776

Issue

Section

Research Article