New Relation-Theoretic Fixed Point Theorems in Revised Fuzzy Metric Spaces With an Application to Fractional Differential Equations

Authors

DOI:

https://doi.org/10.26713/cma.v14i2.1772

Keywords:

Revised fuzzy metric space, Fixed point, Binary relation, R-ψ-contractive mappings, Caputo fractional differential equation

Abstract

In this paper, we introduce the notion of revised fuzzy \(\mathcal{R}\)-\(\psi\)-contractive mappings and prove some relevant results on the existence and uniqueness of fixed points for this type of mappings in the setting of non-Archimedean revised fuzzy metric spaces. Several illustrative examples are also given to support our newly proven results. Furthermore, we apply our main results to prove the existence and uniqueness of a solution for Caputo fractional differential equations.

Downloads

Download data is not yet available.

References

R. P. Agarwal, M. Benchohra and S. Hamani, Boundary value problems for fractional differential equations, Georgian Mathematical Journal 16(3) (2009), 401 – 411, DOI: 10.1515/GMJ.2009.401.

I. Altun and D. Mihe¸t, Ordered non-Archimedean fuzzy metric spaces and some fixed point results, Fixed Point Theory and Applications 2010 (2010), Article number: 782680, DOI: 10.1155/2010/782680.

A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64(3) (1994), 395 – 399, DOI: 10.1016/0165-0114(94)90162-7.

M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 27(3) (1988), 385 – 389, DOI: 10.1016/0165-0114(88)90064-4.

V. Gregori and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 125(2) (2002), 245 – 252, DOI: 10.1016/S0165-0114(00)00088-9.

O. Grigorenko, J. J. Miñana, A. Šostak and O. Valero, On t-conorm based fuzzy (pseudo)metrics, Axioms 9(3) (2020), 78, DOI: 10.3390/axioms9030078.

M. Imdad, Q. H. Khan, W. M. Alfaqih and R. Gubran, A relation-theoretic (F,R)-contraction principle with applications to matrix equations, Bulletin of Mathematical Analysis and Applications 10(1) (2018), 1 – 12, URL: https://www.emis.de/journals/BMAA/repository/docs/BMAA10-1-1.pdf.

A. A. Kilbas and S. A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differential Equations 41 (2005), 84 – 89, DOI: 10.1007/s10625-005-0137-y.

I. Kramosil and J. Michálek, Fuzzy metrics and statistical metric spaces, Kybernetika 11(5) (1975), 336 – 344, URL: http://eudml.org/doc/28711.

D. Mihe¸t, Fuzzy φ-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems 159(6) (2008), 739 – 744, DOI: 10.1016/j.fss.2007.07.006.

A. Muraliraj and R. Thangathamizh, Fixed point theorems in revised fuzzy metric spaces, Advances in Fuzzy Sets and Systems 26(2) (2021), 103 – 115, DOI: 10.17654/FS026020103.

A. Muraliraj and R. Thangathamizh, Some topological properties of revised fuzzy cone metric spaces, Ratio Mathematica 47 (2023), 42 – 51, DOI: 10.23755/rm.v47i0.734.

A. Muraliraj, R. Thangathamizh, N. Popovic, A. Savic and S. Radenovic, The first rational type revised fuzzy-contractions in revised fuzzy metric spaces with an applications, Mathematics 11 (2023), 2244, DOI: 10.3390/math11102244.

J. J. Nieto and R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223 – 239, DOI: 10.1007/s11083-005-9018-5.

J. J. Nieto and R. Rodríguez-López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Mathematica Sinica (English Series) 23 (2007), 2205 – 2212, DOI: 10.1007/s10114-005-0769-0.

S. Phiangsungnoen, Y. J. Cho and P. Kumam, Fixed point results for modified various contractions in fuzzy metric spaces via α-admissible, Filomat 30(7) (2016), 1869 – 1881, URL: https://www.jstor.org/stable/24898759.

A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proceedings of the American Mathematical Society 132(5) (2004), 1435 – 1443, URL: https://www.ams.org/journals/proc/2004-132-05/S0002-9939-03-07220-4/?active=current.

A.-F. Roldán-López-de-Hierro, E. Karapinar and S. Manro, Some new fixed point theorems in fuzzy metric spaces, Journal of Intelligent & Fuzzy Systems 27(5) (2014), 2257 – 2264, DOI: 10.3233/IFS-141189.

S. M. Saleh, W. M. Alfaqih, S. Sessa, and F. Di Martino, New relation-theoretic fixed point theorems in fuzzy metric spaces with an application to fractional differential equations, Axioms 11(3) (2022), 117, DOI: 10.3390/axioms11030117.

A. Šostak, George-Veeramani fuzzy metrics revised, Axioms 7(3) (2018), 60, DOI: 10.3390/axioms7030060.

M. Turinici, Abstract comparison principles and multivariable Gronwall-Bellman inequalities, Journal of Mathematical Analysis and Applications 117(1) (1986), 100 – 127, DOI: 10.1016/0022-247X(86)90251-9.

L. A. Zadeh, Fuzzy sets, Information and Control 8(3) (1965), 338 – 353, DOI: 10.1016/S0019-9958(65)90241-X.

Downloads

Published

18-09-2023
CITATION

How to Cite

Muraliraj, A., & Thangathamizh, R. (2023). New Relation-Theoretic Fixed Point Theorems in Revised Fuzzy Metric Spaces With an Application to Fractional Differential Equations. Communications in Mathematics and Applications, 14(2), 865–880. https://doi.org/10.26713/cma.v14i2.1772

Issue

Section

Research Article