New Relation-Theoretic Fixed Point Theorems in Revised Fuzzy Metric Spaces With an Application to Fractional Differential Equations

Authors

DOI:

https://doi.org/10.26713/cma.v14i2.1772

Keywords:

Revised fuzzy metric space, Fixed point, Binary relation, R-ψ-contractive mappings, Caputo fractional differential equation

Abstract

In this paper, we introduce the notion of revised fuzzy R-ψ-contractive mappings and prove some relevant results on the existence and uniqueness of fixed points for this type of mappings in the setting of non-Archimedean revised fuzzy metric spaces. Several illustrative examples are also given to support our newly proven results. Furthermore, we apply our main results to prove the existence and uniqueness of a solution for Caputo fractional differential equations.

Downloads

References

R. P. Agarwal, M. Benchohra and S. Hamani, Boundary value problems for fractional differential equations, Georgian Mathematical Journal 16(3) (2009), 401 – 411, DOI: 10.1515/GMJ.2009.401.

I. Altun and D. Mihe¸t, Ordered non-Archimedean fuzzy metric spaces and some fixed point results, Fixed Point Theory and Applications 2010 (2010), Article number: 782680, DOI: 10.1155/2010/782680.

A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64(3) (1994), 395 – 399, DOI: 10.1016/0165-0114(94)90162-7.

M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 27(3) (1988), 385 – 389, DOI: 10.1016/0165-0114(88)90064-4.

V. Gregori and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 125(2) (2002), 245 – 252, DOI: 10.1016/S0165-0114(00)00088-9.

O. Grigorenko, J. J. Miñana, A. Šostak and O. Valero, On t-conorm based fuzzy (pseudo)metrics, Axioms 9(3) (2020), 78, DOI: 10.3390/axioms9030078.

M. Imdad, Q. H. Khan, W. M. Alfaqih and R. Gubran, A relation-theoretic (F,R)-contraction principle with applications to matrix equations, Bulletin of Mathematical Analysis and Applications 10(1) (2018), 1 – 12, URL: https://www.emis.de/journals/BMAA/repository/docs/BMAA10-1-1.pdf.

A. A. Kilbas and S. A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differential Equations 41 (2005), 84 – 89, DOI: 10.1007/s10625-005-0137-y.

I. Kramosil and J. Michálek, Fuzzy metrics and statistical metric spaces, Kybernetika 11(5) (1975), 336 – 344, URL: http://eudml.org/doc/28711.

D. Mihe¸t, Fuzzy φ-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems 159(6) (2008), 739 – 744, DOI: 10.1016/j.fss.2007.07.006.

A. Muraliraj and R. Thangathamizh, Fixed point theorems in revised fuzzy metric spaces, Advances in Fuzzy Sets and Systems 26(2) (2021), 103 – 115, DOI: 10.17654/FS026020103.

A. Muraliraj and R. Thangathamizh, Some topological properties of revised fuzzy cone metric spaces, Ratio Mathematica 47 (2023), 42 – 51, DOI: 10.23755/rm.v47i0.734.

A. Muraliraj, R. Thangathamizh, N. Popovic, A. Savic and S. Radenovic, The first rational type revised fuzzy-contractions in revised fuzzy metric spaces with an applications, Mathematics 11 (2023), 2244, DOI: 10.3390/math11102244.

J. J. Nieto and R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223 – 239, DOI: 10.1007/s11083-005-9018-5.

J. J. Nieto and R. Rodríguez-López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Mathematica Sinica (English Series) 23 (2007), 2205 – 2212, DOI: 10.1007/s10114-005-0769-0.

S. Phiangsungnoen, Y. J. Cho and P. Kumam, Fixed point results for modified various contractions in fuzzy metric spaces via α-admissible, Filomat 30(7) (2016), 1869 – 1881, URL: https://www.jstor.org/stable/24898759.

A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proceedings of the American Mathematical Society 132(5) (2004), 1435 – 1443, URL: https://www.ams.org/journals/proc/2004-132-05/S0002-9939-03-07220-4/?active=current.

A.-F. Roldán-López-de-Hierro, E. Karapinar and S. Manro, Some new fixed point theorems in fuzzy metric spaces, Journal of Intelligent & Fuzzy Systems 27(5) (2014), 2257 – 2264, DOI: 10.3233/IFS-141189.

S. M. Saleh, W. M. Alfaqih, S. Sessa, and F. Di Martino, New relation-theoretic fixed point theorems in fuzzy metric spaces with an application to fractional differential equations, Axioms 11(3) (2022), 117, DOI: 10.3390/axioms11030117.

A. Šostak, George-Veeramani fuzzy metrics revised, Axioms 7(3) (2018), 60, DOI: 10.3390/axioms7030060.

M. Turinici, Abstract comparison principles and multivariable Gronwall-Bellman inequalities, Journal of Mathematical Analysis and Applications 117(1) (1986), 100 – 127, DOI: 10.1016/0022-247X(86)90251-9.

L. A. Zadeh, Fuzzy sets, Information and Control 8(3) (1965), 338 – 353, DOI: 10.1016/S0019-9958(65)90241-X.

Downloads

Published

18-09-2023
CITATION

How to Cite

Muraliraj, A., & Thangathamizh, R. (2023). New Relation-Theoretic Fixed Point Theorems in Revised Fuzzy Metric Spaces With an Application to Fractional Differential Equations. Communications in Mathematics and Applications, 14(2), 865–880. https://doi.org/10.26713/cma.v14i2.1772

Issue

Section

Research Article