\(\widetilde{g}\)-Open Sets in Fuzzy Topological Spaces

Authors

  • K. Balasubramaniyan Department of Mathematics, Annamalai University, Annamalai Nagar 608002, Chidambaram, Cuddalore, Tamil Nadu, India; Department of Mathematics, Arignar Anna Government Arts College (Periyar University), Vadachennimalai 636121, Attur, Salem, Tamil Nadu, India https://orcid.org/0000-0001-9409-0817
  • R. Prabhakaran Department of Mathematics, Arignar Anna Government Arts College (Periyar University), Vadachennimalai 636121, Attur, Salem, Tamil Nadu, India https://orcid.org/0000-0001-7212-2400

DOI:

https://doi.org/10.26713/cma.v14i2.1760

Keywords:

Fuzzy open sets, Fuzzy g-open sets, Fuzzy \(\widetilde{g}\)-open sets

Abstract

New category of fuzzy generalized closed sets, specifically fuzzy \(\widetilde{g}\)-closed sets is to launch and argue of fuzzy topological spaces. Further, compare with related to various types of fuzzy generalized closed sets are investigated. Moreover, the properties of fuzzy \(\widetilde{g}\)-closed sets are given of this paper.

Downloads

Download data is not yet available.

References

K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, Journal of Mathematical Analysis and Applications 82(1) (1981), 14 – 32, DOI: 10.1016/0022-247X(81)90222-5.

G. Balasubramanian and P. Sundaram, On some generalizations of fuzzy continuous functions, Fuzzy Sets and Systems 86(1) (1997), 93 – 100, DOI: 10.1016/0165-0114(95)00371-1.

K. Balasubramaniyan and R. Prabhakaran, On fuzzy ge-closed sets and it’s properties, Advances in Mathematics: Scientific Journal 9(4) (2020), 2167 – 2175, DOI: 10.37418/amsj.9.4.77.

C. L. Chang, Fuzzy topological spaces, Journal of Mathematical Analysis and Applications 24(1) (1968), 182 – 190, DOI: 10.1016/0022-247X(68)90057-7.

M. E. El-Shafei and A. Zakari, Semi-generalized continuous mappings fuzzy topological spaces, Journal of the Egyptian Mathematical Society 15(1) (2007), 57 – 67.

H. Maki, T. Fukutaka, M. Kojima and H. Harada, Generalized closed sets in fuzzy topological spaces I. Meeting on Topological Spaces, Theory and Applications (1998), 23 – 26.

R. Prasad, S. S. Thakur and R. K. Saraf, Fuzzy α-irresolute mappings, Journal of Fuzzy Mathematics 2(2) (1994), 335 – 339.

A. S. B. Shahna, On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems 44(2) (1991), 303 – 308, DOI: 10.1016/0165-0114(91)90013-G.

S. S. Thakur and S. Singh, On fuzzy semi-preopen sets and fuzzy semi-precontinuity, Fuzzy Sets and Systems 98(3) (1998), 383 – 391, DOI: 10.1016/S0165-0114(96)00363-6.

C. K. Wong, Fuzzy points and local properties of fuzzy topology, Journal of Mathematical Analysis and Applications 46(2) (1974), 316 – 328, DOI: 10.1016/0022-247X(74)90242-X.

T. H. Yalvaç, Semi-interior and semi-closure of a fuzzy set, Journal of Mathematical Analysis and Applications 132(2) (1988), 356 – 364, DOI: 10.1016/0022-247X(88)90067-4.

L. A. Zadeh, Fuzzy sets, Information and Control 8(3) (1965), 338 – 353, DOI: 10.1016/S0019-9958(65)90241-X.

Downloads

Published

20-09-2023
CITATION

How to Cite

Balasubramaniyan, K., & Prabhakaran, R. (2023). \(\widetilde{g}\)-Open Sets in Fuzzy Topological Spaces. Communications in Mathematics and Applications, 14(2), 721–726. https://doi.org/10.26713/cma.v14i2.1760

Issue

Section

Research Article