Stability Results of Additive-Quadratic \(n\)-Dimensional Functional Equation: Fixed Point Approach

Authors

DOI:

https://doi.org/10.26713/cma.v13i2.1757

Keywords:

Additive functional equation, Quadratic functional equation, Generalized Ulam-Hyers stability, JMRassias stability

Abstract

In this paper, the authors discussed the Ulam-Hyers stability results of \(n\)-dimensional mixed type additive and quadratic functional equation:
\begin{align*}
\sum\limits^{n}_{i=1}f\!\bigg(\sum\limits^{n}_{j=1}x_{ij}\bigg)\!& = \bigg(\frac{-n^2+7n-6}{2}\bigg)\!\!
\sum_{i=1}^n f(x_i)+\!\bigg(\frac{-n^2+5n-2}{2}\bigg)\!\!
\sum_{i=1}^n f(-x_i) \\
&\quad +\left(\frac{n-4}{2}\right)
\sum_{1\le i<j\le n}(f(x_i+x_j)
+f(-x_i-x_j))\,,
\end{align*}
where
\begin{align*}
x_{ij}=
\begin{cases}
-x_j&\text{if} \ i=j, \\
x_j &\text{if} \ i\neq j,
\end{cases}
\end{align*} in Banach spaces using fixed point method.

Downloads

Download data is not yet available.

References

J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, (1989), DOI: 10.1017/CBO9781139086578.

M. Adam, Alienation of the quadratic and additive functional equations, Analysis Mathematica 45 (2019), 449 – 460, DOI: 10.1007/s10476-019-0869-1.

T. Aoki, On the stability of the linear transformation in Banach spaces, Journal of the Mathematical Society of Japan 2 (1950), 64 – 66, DOI: 10.2969/jmsj/00210064.

M. Arunkumar and S. Karthikeyan, Solution and stability of n-dimensional additive functional equation, International Journal of Applied Mathematics 25(2) (2012), 163 – 174, URL: https://www.diogenes.bg/ijam/contents/2012-25/v25_2/2_IJAM_25_2_2012.pdf.

M. Arunkumar and S. Karthikeyan, Solution and intuitionistic fuzzy stability of n-dimensional quadratic functional equation: Direct and fixed point methods, International Journal of Advanced Mathematical Sciences 2(1) (2014), 21 – 33, DOI: 10.14419/ijams.v2i1.1498.

S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ (2002), DOI: 10.1142/4875.

I.S. Chang, E.H. Lee and H.M. Kim, On the Hyers-Ulam-Rassias stability of a quadratic functional equations, Mathematical Inequalities & Applications 6(1) (2003), 87 – 95, URL: http://files.ele-math.com/abstracts/mia-06-08-abs.pdf.

J.B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bulletin of the American Mathematical Society 74 (1968), 305 – 309, DOI: 10.1090/S0002-9904-1968-11933-0.

P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, Journal of Mathematical Analysis and Applications 184(3) (1994), 431 – 436, DOI: 10.1006/jmaa.1994.1211.

D.H. Hyers, On the stability of the linear functional equation, Proceedings of the National Academy of Sciences 27(4) (1941), 222 – 224, DOI: 10.1073/pnas.27.4.222.

D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel (1998), DOI: 10.1007/978-1-4612-1790-9.

K.W. Jun and H.M. Kim, On the Hyers-Ulam-Rassias stability of a generalized quadratic and additive type functional equation, Bulletin of the Korean Mathematical Society 42(1) (2005), 133 – 148, DOI: 10.4134/BKMS.2005.42.1.133.

K.W. Jun and H.M. Kim, On the stability of an n-dimensional quadratic and additive type functional equation, Mathematical Inequalities & Applications 9(1) (2006), 153 – 165, DOI: 10.7153/mia-09-16.

S.M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, Journal of Mathematical Analysis and Applications 222 (1998), 126 – 137, DOI: 10.1006/jmaa.1998.5916.

S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor (2001).

P.L. Kannappan, Quadratic functional equation inner product spaces, Results in Mathematics volume 27(3-4) (1995), 368 – 372, DOI: 10.1007/BF03322841.

S. Karthikeyan, C. Park, P. Palani and T.R.K. Kumar, Stability of an additive-quartic functional equation in modular spaces, Journal of Mathematics and Computer Science 26(1) (2022), 22 – 40, DOI: 10.22436/jmcs.026.01.04.

S. Karthikeyan, G. Ganapathy, P. Palani, M. Suresh and S. Jaikumar, Stability of a quadratic functional equation, Advances in Dynamical Systems and Applications 16(2) (2021), 1167 — 1181, DOI: 10.37622/ADSA/16.2.2021.1167-1181.

H.M. Kim and H.Y. Shin, Refined stability of additive and quadratic functional equations in modular spaces, Journal of Inequalities and Applications 2017 (2017), Article number: 146, DOI: 10.1186/s13660-017-1422-z.

A. Najati and M.B. Moghimi, On the stability of a quadratic and additive functional equation, Journal of Mathematical Analysis and Applications 337(1) (2008), 399 – 415, DOI: 10.1016/j.jmaa.2007.03.104.

J.M. Rassias, On approximately of approximately linear mappings by linear mappings, Journal of Functional Analysis 46 (1982), 126 – 130, DOI: 10.1016/0022-1236(82)90048-9.

J.M. Rassias, P. Narasimman, R. Saadati and M. de la Sen, Approximation of mixed Euler-Lagrange σ-cubic-quartic functional equation in Felbin’s type f-NLS, Journal of Function Spaces 2021 (2021), Article ID 8068673, 7 pages, DOI: 10.1155/2021/8068673.

Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proceedings of the American Mathematical Society 72 (1978), 297 – 300, DOI: 10.2307/2042795.

Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Applicandae Mathematica 62 (2000), 23 – 130, DOI: 10.1023/A:1006499223572.

Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht — Bostan — London (2003), DOI: 10.1007/978-94-017-0225-6.

Th.M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proceedings of the American Mathematical Society 114 (1992), 989 – 993, DOI: 10.2307/2159617.

K. Ravi, M. Arunkumar and J.M. Rassias, Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematics and Statistics 3 (2008), 36 – 47, URL: https://go.gale.com/ps/i.do?id=GALE%7CA178412133&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=09738347&p=AONE&sw=w&userGroupName=anon%7E664874ac.

S.M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York (1964).

S. Vijayakumar, S. Karthikeyan, J.M. Rassias and B. Baskaran, A quartic functional equation originating from the sum of the medians of a triangle in fuzzy normed space, AIP Conference Proceedings 2282 (2020), Article ID 020006, DOI: 10.1063/5.0028290.

Downloads

Published

15-08-2022
CITATION

How to Cite

Karthikeyan, S., Rassias, J. M., Vijayakumar, S., & Sakthivel, K. (2022). Stability Results of Additive-Quadratic \(n\)-Dimensional Functional Equation: Fixed Point Approach. Communications in Mathematics and Applications, 13(2), 461–476. https://doi.org/10.26713/cma.v13i2.1757

Issue

Section

Research Article