M-N Homomorphism of an M-N Fuzzy Soft Subgroups and Its Level M-N Subgroups

Authors

  • M. Kaliraja PG and Research Department of Mathematics, H.H. The Rajah’s College (Bharathidasan University), Pudukottai 622001, Tiruchirappalli, Tamilnadu, India https://orcid.org/0000-0003-1555-4631
  • S. Rumenaka PG and Research Department of Mathematics, H.H. The Rajah’s College (Bharathidasan University), Pudukottai 622001, Tiruchirappalli, Tamilnadu, India https://orcid.org/0000-0002-0302-787X

DOI:

https://doi.org/10.26713/cma.v13i2.1746

Keywords:

Fuzzy group, M-N fuzzy group, M-N fuzzy soft subgroups, M-N level subset, M-N homomorphism of fuzzy soft subgroups

Abstract

We examined the notion of M-N homomorphism of fuzzy soft subgroups in this study, then defined the M-N level subsets of a fuzzy soft subgroup and discussed some of its basic aspects.

Downloads

Download data is not yet available.

References

H. Akta¸s and N. Çagman, Soft sets and soft groups, ˘ Information Sciences 177(13) (2007), 2726 – 2735, DOI: 10.1016/j.ins.2006.12.008.

P.S. Das, Fuzzy groups and level subgroups, Journal of Mathematical Analysis and Applications 84(1) (1981), 264 – 269, DOI: 10.1016/0022-247x(81)90164-5.

N. Jacobson, Lectures in Abstract Algebra I: Basic Concepts, in: Graduate Texts in Mathematics (GTM, Volume 30), 217 pages, Springer, New York, NY (1951), DOI: 10.1007/978-1-4684-7301-8.

M. Kaliraja and S. Rumenaka, M-N fuzzy normal soft groups, International Journal of Fuzzy Mathematical Archive 13(2) (2017), 159 – 165, URL: http://www.researchmathsci.org/IJFMAart/IJFMA-v13n2-6.pdf.

M. Kaliraja and S. Rumenaka, Some result on M-N fuzzy soft groups, Journal of Applied Science and Computations V(XII) (2018), 1076 – 5131, URL: http://www.j-asc.com/gallery/330-december-1434.pdf.

P.K. Maji, R. Biswas and A. Roy, Soft set theory, Computers & Mathematics with Applications 45(4–5) (2003), 555 – 562, DOI: 10.1016/s0898-1221(03)00016-6.

M.O. Massa’deh, The MN-homomorphism and MN-anti homomorphism over MN fuzzy subgroups, International Journal of Pure and Applied Mathematics 78(7) (2012), 1019 – 1027, URL: http://www.ijpam.eu/contents/2012-78-7/9/index.html.

D. Molodtsov, Soft set theory — first results, Computers & Mathematics with Applications 37(4-5) (1999), 19 – 31, DOI: 10.1016/S0898-1221(99)00056-5.

N.P. Mukherjee and P. Bhattacharya, Fuzzy normal subgroups and fuzzy cosets, Information Sciences 34(3) (1984), 225 – 239, DOI: 10.1016/0020-0255(84)90050-1.

R. Muthuraj, M. Rajinikannan and M.S. Muthuraman, The M-homomorphism and M-anti homomorphism of an M-fuzzy subgroup and its level M-subgroups, International Journal of Computer Applications 2(1) (2010), 66 – 70, DOI: 10.5120/611-862.

A. Rosenfeld, Fuzzy groups, Journal of Mathematical Analysis and Applications 35(3) (1971), 512 – 517, DOI: 10.1016/0022-247X(71)90199-5.

L.A. Zadeh, Fuzzy sets, in: Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems, 394 – 432 (1996), DOI: 10.1142/9789814261302_0021.

Downloads

Published

17-08-2022
CITATION

How to Cite

Kaliraja, M., & Rumenaka, S. (2022). M-N Homomorphism of an M-N Fuzzy Soft Subgroups and Its Level M-N Subgroups. Communications in Mathematics and Applications, 13(2), 595–602. https://doi.org/10.26713/cma.v13i2.1746

Issue

Section

Research Article