Some Results on \(r\)-Row-Regular Circulant Partial Hadamard Matrices of Order \((k \times 2k)\)

Authors

DOI:

https://doi.org/10.26713/cma.v13i1.1734

Keywords:

Hadamard matrix, Circulant matrix, Partial Hadamard matrix, Orthogonal design

Abstract

This paper provides some new results on \(r\)-row-regular circular partial Hadamard matrices of order \((k\times 2k)\), and also discusses the possible linear relationship between \(r\) and \(k\). Furthermore, a method of constructing such a matrix is given.

Downloads

Download data is not yet available.

References

R. Craigen, G. Faucher, R. Low and T. Wares, Circulant partial Hadamard matrices, Linear Algebra and its Applications 439(11) (2013), 3307 – 3317, DOI: 10.1016/j.laa.2013.09.004.

P. J. Davis, Circulant Matrices, 2nd edition, Vol. 338, 1994, 250 pp, AMS Chelsea Publishing, New York (1994), URL: https://bookstore.ams.org/chel-338.

R. Euler, L. H. Gallardo and O. Rahavandrainy, Eigenvalues of circulant matrices and a conjecture of Ryser, Kragujevac Journal of Mathematics 45(5) (2021), 751 – 759, URL: https://imi.pmf.kg.ac.rs/kjm/pdf/accepted-finished/01600fd373df27b2cb120d21fe74373b_2536_08012019_032857/kjm_45_5-7.pdf.

K. J. Horadam, Hadamard Matrices and Their Applications, Princeton University Press, Princeton, NJ (2007), DOI: 10.1515/9781400842902.

Y.-L. Lin, F. K. H. Phoa and M.-H. Kao, Circulant partial Hadamard matrices: Construction via general difference sets and its application to fMRI experiments, Statistica Sinica 27(4) (2017), 1715 – 1724, DOI: 10.5705/ss.202016.0254.

P. K. Manjhi and A. Kumar, On the construction of Hadamard matrices, International Journal of Pure and Applied Mathematics 120(1) (2018), 51 – 58.

P. K. Manjhi, On permutation group and Fourier matrices, International Journals for Engineering Application and Management 4(4) (2018), 197 – 200.

H. J. Ryser, Combinatorial Mathematics, The Carus Mathematical Monographs Vol. 14, AMS and The Mathematical Association of America, John Wiley and Sons Inc., New York, 154 pages (1963).

J. Saberry and M. Yamada, Hadamard Matrices: Constructions using Number Theory and Linear Algebra, John Wiley and Sons Inc., 352 pages (2020).

Downloads

Published

23-05-2022
CITATION

How to Cite

Manjhi, P. K., & Rana, M. K. (2022). Some Results on \(r\)-Row-Regular Circulant Partial Hadamard Matrices of Order \((k \times 2k)\). Communications in Mathematics and Applications, 13(1), 129–136. https://doi.org/10.26713/cma.v13i1.1734

Issue

Section

Research Article