Boosters and Filters in MS-Almost Distributive Lattices

Authors

DOI:

https://doi.org/10.26713/cma.v13i3.1715

Keywords:

Booster, β-filter, ADL, MS-ADL, Maximal element

Abstract

This paper deals on boosters and \(\beta\)-filters in MS-almost distributive lattice \(M\). It is proved that the set of all boosters in \(M\) is a bounded distributive lattice. Characterization of \(\beta\)-filters of $M$ in terms of boosters is established and a dual homomorphism of \(M\) and the set of all boosters of \(M\) is derived. Further, it is shown that every filter in \(M\) is an \(e\)-filter and every maximal filter in \(M\) is a \(\beta\)-filter. Equivalent conditions on which the set of all boosters is a relatively complemented lattice are established.

Downloads

Download data is not yet available.

References

G. M. Addis, MS-almost distributive lattices, Asian-European Journal of Mathematics 13(7) (2020), 2050135 (14 pages), DOI: 10.1142/S1793557120501351.

J. Berman, Distributive lattices with an additional unary operation, Aequationes Mathematicae 16 (1977), 165 – 171, DOI: 10.1007/BF01836429.

T. S. Blyth and J. C. Varlet, Ockham Algebras, Oxford Science Publications Series, Oxford University Press, 256 pages (1994).

T. S. Blyth and J. C. Varlet, On a common abstraction of de Morgan algebras and Stone algebras, Proceedings of the Royal Society of Edinburgh Section A: Mathematics 94(3-4) (1983), 301 – 308, DOI: 10.1017/S0308210500015663.

T. S. Blyth and J. C. Varlet, Subvarieties of the class of MS-algebras, Proceedings of the Royal Society of Edinburgh Section A: Mathematics 95(1-2) (1983), 157 – 169, DOI: 10.1017/S0308210500015869.

N. Rafi, R. K. Bandaru and S. N. Rao, δ-ideals in pseudo-complemented almost distributive lattices, Palestine Journal of Mathematics 5 (2016), 240 – 248, URL: https://pjm.ppu.edu/sites/default/files/papers/PJM_Sep_2016_28.pdf.

G. C. Rao, Almost Distributive Lattices, Doctoral Thesis, Department of Mathematics, Andhra University, Visakhapatnam (1980).

M. S. Rao, β-Filters of MS-algebras, Asian-European Journal of Mathematics 5(2) (2012), 1250023, DOI: 10.1142/S1793557112500234.

M. S. Rao, e-Filters of MS-algebras, Acta Mathematica Scientia 33 (2013), 738 – 746, DOI: 10.1016/S0252-9602(13)60034-X.

U. M. Swamy and G. C. Rao, Almost distributive lattices, Journal of the Australian Mathematical Society (Series A) 31 (1981), 77 – 91, DOI: 10.1017/S1446788700018498.

U. M. Swamy, G. C. Rao and G. N. Rao, Pseudo-complementation on almost distributive lattices, Southeast Asian Bulletin of Mathematics 24 (2000), 95 – 104, DOI: 10.1007/s10012-000-0095-5.

U. M. Swamy, G. C. Rao and G. N. Rao, Stone almost distributive lattices, Southeast Asian Bulletin of Mathematics 27 (2003), 513 – 526, URL: https://web.p.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=01292021&AN=13103918&h=cFqO3q7L3MaK5c9pANGFq9pEfyAJ3n%2fsb6ViUySZse0o%2fyb1wboWT9u0LJI6A4dO%2buIV5wY9jSw9S8MshKVPTA%3d%3d&crl=f&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d01292021%26AN%3d13103918.

Downloads

Published

29-11-2022
CITATION

How to Cite

Gubena, Y. M., & Alemayehu, T. G. (2022). Boosters and Filters in MS-Almost Distributive Lattices. Communications in Mathematics and Applications, 13(3), 1169–1180. https://doi.org/10.26713/cma.v13i3.1715

Issue

Section

Research Article