On Generalized Fibonacci Hybrinomials

Authors

DOI:

https://doi.org/10.26713/cma.v13i2.1706

Keywords:

Fibonacci polynomial, Lucas polynomial, Fibonacci hybrinomial, Lucas hybrinomial

Abstract

In this paper, we define generalized Fibonacci hybrinomials, which are generalization of both Fibonacci type hybrinomials and Lucas type hybrinomials. We introduce these hybrinomials in two types as generalized Fibonacci type hybrinomials and generalized Lucas type hybrinomials. We obtain matrix representations, Binet formulas, generating functions and some properties of the generalized Fibonacci hybrinomials. Moreover, we give relationship between the generalized Fibonacci type hybrinomials and generalized Lucas type hybrinomials.

Downloads

Download data is not yet available.

References

G. Bilgici, Unrestricted Gibonacci hybrid numbers, Turkish Journal of Mathematics and Computer Science 13(1) (2021), 51 – 56, https://dergipark.org.tr/en/download/article-file/1120251.

G. Cerda-Morales, Introduction to third-order Jacobsthal and modified third-order Jacobsthal hybrinomials, Discussiones Mathematicae: General Algebra and Applications 41(1) (2021), 139 – 152, DOI: 10.7151/dmgaa.1349.

S. Falcón and Á. Plaza, On the k-fibonacci numbers, Chaos, Solitons and Fractals 32(5) (2007), 1615 – 1624, DOI: 10.1016/j.chaos.2006.09.022.

S. Falcon, On the k-Lucas numbers, International Journal of Contemporary Mathematical Sciences 6(21) (2011), 1039 – 1050.

R. Florez, R.A. Higuita and A. Mukherjee, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers 18 (2018), Arcticle number A14, URL: http://math.colgate.edu/~integers/s14/s14.pdf.

R. Florez, N. McAnally and A. Mukherjee, Identities for the generalized Fibonacci polynomial, Integers 18B (2018), Article number A12, URL: http://math.colgate.edu/~integers/s18b2/s18b2.pdf.

˙I. Gültekin and Y. Ta¸syurdu, On period of the sequence of Fibonacci polynomials modulo m, Discrete Dynamics in Nature and Society 2013 (2013), Article ID 731482, DOI: 10.1155/2013/731482.

V.E. Hoggatt (Jr.) and C.T. Long, Divisibility properties of generalized Fibonacci polynomials, Fibonacci Quarterly 12 (1974), 113 – 120, URL: https://www.mathstat.dal.ca/FQ/Scanned/12-2/hoggatt1.pdf.

T. Koshy, Fibonacci and Lucas Numbers with Applications, Vol. 1, 2nd edition, Wiley-Interscience Publications, Canada, 704 pages (2017), URL: https://www.wiley.com/en-us/Fibonacci+and+Lucas+Numbers+with+Applications%2C+Volume+1%2C+2nd+Edition-p-9781118742129.

M. Liana, A. Szynal-Liana and I. Wloch, On Pell hybrinomials, Miskolc Mathematical Notes 20(2) (2019), 1051 – 1062, DOI: 10.18514/MMN.2019.2971.

A. Nalli and P. Haukkanen, On generalized Fibonacci and Lucas polynomials, Chaos, Solitons and Fractals 17(5) (2009), 3179 – 3186, DOI: 10.1016/j.chaos.2009.04.048.

M. Özdemir, Introduction to hybrid numbers, Advances in Applied Clifford Algebras 28 (2018), Article number: 11, DOI: 10.1007/s00006-018-0833-3.

Y.K. Panwar, B. Singh and V.K. Gupta, Generalized Fibonacci polynomials, Turkish Journal of Analysis and Number Theory 1(1) (2013), 43 – 47, DOI: 10.12691/tjant-1-1-9.

S.H.J. Petroudi, M. Pirouz and A.Ö. Özturk, The Narayana polynomial and Narayana hybrinomial sequences, Konuralp Journal of Mathematics 9(1) (2021), 90 – 99, URL: https://dergipark.org.tr/en/download/article-file/1463858.

A. Szynal-Liana, Horadam hybrid numbers, Discussiones Mathematicae: General Algebra and Applications 38 (2018), 91 – 98, DOI: 10.7151/dmgaa.1287.

A. Szynal-Liana and I. Włoch, On Pell and Pell-Lucas hybrid numbers, Commentationes Mathematicae 58 (2018), 11 – 17, DOI: 10.14708/cm.v58i1-2.6364.

A. Szynal-Liana and I. Włoch, On Jacosthal and Jacosthal-Lucas hybrid numbers, Annales Mathematicae Silesianae 33(1) (2019), 276 – 283, DOI: 10.2478/amsil-2018-0009.

A. Szynal-Liana and I. Włoch, Introduction to Fibonacci and Lucas hybrinomials, Complex Variables and Elliptic Equations 65(10) (2020), 1736 – 1742, DOI: 10.1080/17476933.2019.1681416.

A. Szynal-Liana and I. Włoch, Generalized Fibonacci-Pell hybrinomials, Online Journal of Analytic Combinatorics 15, 1 – 12, URL: https://hosted.math.rochester.edu/ojac/articles.html.

E. Sevgi, The generalized Lucas hybrinomials with two variables, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70(2) (2021), 622 – 630, DOI: 10.31801/cfsuasmas.854761.

Y. Ta¸syurdu, Tribonacci and Tribonacci-Lucas hybrid numbers, International Journal of Contemporary Mathematical Sciences 14(4) (2019), 245 – 254, DOI: 10.12988/ijcms.2019.91124

Y. Ta¸syurdu and Y.E. Polat, Tribonacci and Tribonacci-Lucas hybrinomials, Journal of Mathematics Research 13(5) (2021), 32 – 43, DOI: 10.5539/jmr.v13n5p32.

T. Yagmur, A note on generalized hybrid Tribonacci numbers, ˘ Discussiones Mathematicae: General Algebra and Applications 40 (2020), 187 – 199, DOI: 10.7151/dmgaa.1343.

Downloads

Published

17-08-2022
CITATION

How to Cite

Taşyurdu, Y., & Şahin, A. (2022). On Generalized Fibonacci Hybrinomials. Communications in Mathematics and Applications, 13(2), 737–751. https://doi.org/10.26713/cma.v13i2.1706

Issue

Section

Research Article