An Introduction to Multi Inner Product Space

Authors

DOI:

https://doi.org/10.26713/cma.v13i1.1700

Keywords:

Multi linear space, Multi complex number, Multi inner product, Schwarz inequality, Parallelogram law, Multi Hilbert space

Abstract

In this paper, for the first time, notion of multi complex numbers and multi complex number valued inner product is introduced in multi linear (vector) space. Starting from the definition, some basic properties of multi inner product spaces are studied along with examples. Multi number valued parallelogram law and polarization identity are established in multi inner product space.

Downloads

Download data is not yet available.

References

W.D. Blizard, Multiset theory, Notre Dame Journal of Formal Logic 30(1) (1989), 36 – 66, DOI: 10.1305/ndjfl/1093634995.

W.D. Blizard, Negative membership, Notre Dame Journal of Formal Logic 31(3) (1990), 346 – 368, DOI: 10.1305/ndjfl/1093635499.

W. D. Blizard, Real-valued multisets and fuzzy sets, Fuzzy Sets and Systems 33(1) (1989), 77 – 97, DOI: 10.1016/0165-0114(89)90218-2.

W.D. Blizard, The development of multiset theory, Modern Logic 1(4) (1991), 319 – 352, URL: https://projecteuclid.org/journals/modern-logic/volume-1/issue-4/The-development-ofmultiset-theory/rml/1204834739.full.

K. Chakrabarty, Bags with interval counts, Foundations of Computing and Decision Sciences 25(1) (2000), 23 – 36, URL: http://fcds.cs.put.poznan.pl/FCDS/Old/2000.htm.

K. Chakrabarty and I. Despi, nk-bags, International Journal of Intelligent Systems 22(2) (2007), 223 – 236, DOI: 10.1002/int.20195.

G.F. Clements, On multiset k-families, Discrete Mathematics 69(2) (1988), 153 – 164, DOI: 10.1016/0012-365X(88)90013-1.

M. Conder, S. Marshall and A.M. Slinko, Orders on multisets and discrete cones, Order 24 (2007), 277 – 296, URL: DOI: 10.1007/s11083-007-9073-1.

S. Das and R. Roy, An introduction to multi metric spaces, Advances in Dynamical Systems and Applications 16(2) (2021), 605 – 618, URL: https://www.ripublication.com/adsa21/v16n2p17.pdf.

S. Das and R. Roy, Multi linear operator on multi normed linear space, Journal of Mathematical and Computational Science 11 (2021), 7906 – 7920, URL: http://scik.org/index.php/jmcs/article/view/6698.

S. Das and R. Roy, Some topological properties of multi metric spaces, Journal of Mathematical and Computational Science 11 (2021), 7253 – 7268,URL: http://scik.org/index.php/jmcs/article/view/6605.

K.P. Girish and S.J. John, Multiset topologies induced by multiset relations, Information Sciences 188(0) (2012), 298 – 313, DOI: 10.1016/j.ins.2011.11.023.

K.P. Girish and S.J. John, On multiset topologies, Theory and Applications of Mathematics and Computer Science 2(1) (2012), 37 – 52, https://www.uav.ro/applications/se/journal/index.php/TAMCS/article/view/53.

K.P. Girish and S.J. John, Relations and functions in multiset context, Information Sciences 179(6) (2009), 758 – 768, DOI: 10.1016/j.ins.2008.11.002.

S.P. Jena, S.K. Ghosh and B.K. Tripathy, On the theory of bags and lists, Information Sciences 132(1-4) (2001), 241 – 254, DOI: 10.1016/S0020-0255(01)00066-4.

Sk. Nazmul and S.K. Samanta, On soft multigroups, Annals of Fuzzy Mathematics and Informatics 10(2) (2015), 271 – 285, URL: http://afmi.or.kr/papers/2015/Vol-10_No-02/PDF/AFMI-10-2(271-285)-H-141201R1.pdf.

Sk. Nazmul, P. Majumdar and S.K. Samanta, On multisets and multigroups, Annals of Fuzzy Mathematics and Informatics 6(30) (2013), 643 – 656, URL: http://www.afmi.or.kr/papers/2013/Vol06_No-03/AFMI-6-3(455--798)/AFMI-6-3(643--656)-H-130208-1R1.pdf.

J.L. Peterson, Computation sequence sets, Journal of Computer and System Sciences 13(1) (1976), 1 – 24, DOI: 10.1016/S0022-0000(76)80047-5.

R. Roy, S. Das and S.K. Samanta, On multi normed linear spaces, International Journal of Mathematics Trends and Technology 48(2) (2017), 111 – 119, URL: http://www.ijmttjournal.org/2017/Volume-48/number-2/IJMTT-V48P514.pdf.

D. Singh, A note on “the development of multiset theory”, Modern Logic 4(4) (1994), 405 – 406, URL: https://projecteuclid.org/journals/review-of-modern-logic/volume-4/issue-4/A-note-on-The-development-of-multiset-theory/rml/1204835356.full.

D. Singh, A.M. Ibrahim, T. Yohana and J.N. Singh, An overview of the applications of multisets, Novi Sad Journal of Mathematics 37(2) (2007), 73 – 92, URL: http://eudml.org/doc/226431.

D. Singh, A.M. Ibrahim, T. Yohana and J.N. Singh, Complementation in multiset theory, International Mathematical Forum 6(38) (2011), 1877 – 1884.

D. Tokat, ˙I. Osmanoglu and Y. Üçok, On soft multi continuous functions, The Journal of New Theory 2015 (1) (2015), 50 – 58, URL: https://dergipark.org.tr/en/pub/jnt/issue/34527/381473.

Downloads

Published

23-05-2022
CITATION

How to Cite

Das, S. (2022). An Introduction to Multi Inner Product Space. Communications in Mathematics and Applications, 13(1), 147–161. https://doi.org/10.26713/cma.v13i1.1700

Issue

Section

Research Article