Inverse Split Majority Dominating Set of a Graph

Authors

  • J. Joseline Manora PG & Research Department of Mathematics, Tranquebar Bishop Manickam Lutheran College (affiliated to Bharathidasan University), Porayar 609 307, Tamilnadu, India https://orcid.org/0000-0002-5265-7413
  • S. Vignesh PG & Research Department of Mathematics, Tranquebar Bishop Manickam Lutheran College (affiliated to Bharathidasan University), Porayar 609 307, Tamilnadu, India https://orcid.org/0000-0003-0556-3948
  • I. Paulraj Jayasimman Academy of Maritime Education and Training (AMET) (Deemed to be University), Chennai, Tamil Nadu, India https://orcid.org/0000-0002-1850-4464

DOI:

https://doi.org/10.26713/cma.v12i4.1697

Keywords:

Majority domination number, Inverse majority domination number, Split dominating (SD) set, Inverse Split Majority dominating (ISMD) set, Inverse Split majority domination number.

Abstract

In this paper, we introduced an inverse split majority dominating set of a graph \(G\). Inverse split majority domination number \({\gamma }^{-1}_{SM}(G)\) is determined for some classes of graphs. Some important results and characterization theorems on \({\gamma }^{-1}_{SM}(G)\) are established. Many Bounds on inverse split majority domination number and its relationship with other domination parameters are also obtained.

Downloads

Download data is not yet available.

References

C. Berge, Théorie des graphes et ses applications (in French), Dunod, Paris (1958).

K. A. Bibi and R. Selvakumar, The inverse split and non-split domination in graphs, International Journal of Computer Applications 8(7) (2010), 21 – 29, DOI: 10.5120/1221-1768.

T. T. Chelvam and G. S. G. Prema, Equality of domination and inverse domination numbers, Ars Combinatoria 95 (2010), 103 – 111, URL: http://www.combinatoire.ca/ArsCombinatoria/Vol95.html.

T. T. Chelvam and S. R. Chellathurai, A note on split domination number of a graph, Journal of Discrete Mathematical Sciences & Cryptography 12(2) (2009), 179 – 186, DOI: 10.1080/09720529.2009.10698228.

E. Cockayne and S. Hedetniemi, Towards a theory of domination in graphs, Networks 7(3) (1977), 247 – 261, DOI: 10.1002/net.3230070305.

M. V. Dhanyamol and S. Mathew, Distances in weighted graph, Annals of Pure and Applied Mathematics 8(1) (2014), 1 – 9, URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.682.8139&rep=rep1&type=pdf.

G. S. Domke, J. E. Dunber and L. R. Markus, The inverse domination number of a graph, Ars Combinatorics 72(2004), 149 – 160, URL: http://www.combinatoire.ca/ArsCombinatoria/Vol72.html.

T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, 1st edition, CRC Press, Boca Raton (1998), DOI: 10.1201/9781482246582.

V. R. Kulli, Inverse Domination a Some New Parameters. Advances in Domination Theory I, Vishwa International Publications, 15 – 24 (2012).

V. R. Kulli, Inverse and disjoint neighborhood connected dominating sets in graphs, Acta Ciencia Indica XLM (1) (2014), 65 – 70.

V. R. Kulli and A. Singarkanti, Inverse domination in graphs, National Academy of Sciences - Letters 14 (1991), 473 – 475.

V. R. Kulli and B. Janakiram, The Split Domination Number of a Graph, New York Academy of Sciences, 16 – 19 (1997).

J. J. Manora and S. Vignesh, Inverse independent majority dominating set of a graph, Malaya Journal of Matematik 1 (2021), 272 – 277, https://www.malayajournal.org/articles/MJMS210058.pdf.

J. J. Manora and V. Swaminathan, Majority dominating sets in graphs, Jamal Academic Research Journal 3(2) (2006), 75 – 82.

E. A. Nordhaus and J. W. Gaddm, On complementary graphs, The American Mathematical Monthly 63 (1956), 175 – 177, https://www.jstor.org/stable/pdf/2306658.pdf.

O. Ore, Theory of Graphs, American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, Rhode Island, 38 (1962), URL: https://bookstore.ams.org/coll-38.

M. Pal, Intersection graphs: an introduction, Annals of Pure and Applied Mathematics 4(1) (2013) 43 – 91, URL: http://www.researchmathsci.org/apamart/apamv4issue1.html.

E. Sampathkumar and H. B. Walikar, The connected domination number of a graph, Journal of Mathematical and Physical Sciences 13 (1979), 607 – 613.

V. S. Shigehalli and G. V. Uppin, Some properties of glue graph, Annals of Pure and Applied Mathematics 6(1) (2014), 98 – 103, URL: http://www.researchmathsci.org/apamart/apamv6issue1.html.

Downloads

Published

13-12-2021
CITATION

How to Cite

Manora, J. J., Vignesh, S., & Jayasimman, I. P. (2021). Inverse Split Majority Dominating Set of a Graph. Communications in Mathematics and Applications, 12(4), 941–950. https://doi.org/10.26713/cma.v12i4.1697

Issue

Section

Research Article