2D Hexagonal Finite Fuzzy Cellular Automata

Authors

DOI:

https://doi.org/10.26713/cma.v13i1.1696

Keywords:

Two dimensional hexagonal fuzzy cellular automta, Matrix algebra, Null boundary condition, Periodic boundary condition

Abstract

In this paper 2D hexagonal finite fuzzy cellular automata defined by fuzzy transition of local rules based on hexagonal cell structure are studied. Here the inverse problem of 2D hexagonal finite fuzzy cellular automata is also studied.

Downloads

Download data is not yet available.

References

A.I. Adamantzky, Hierarchy of fuzzy cellular automata, Fuzzy Sets and Systems 62(2) (1994), 167 – 174, DOI: 10.1016/0165-0114(94)90056-6.

D. D’Ambrosio, S. Di Gregorio and G. Iovine, Simulating debris flows through a hexagonal cellular automata model: SCIDDICA S3-hex, Natural Hazards and Earth System Sciences 3 (2003), 545 – 559, DOI: 10.5194/nhess-3-545-2003.

L.H. Encinas, S.H. White, A.M. del Rey and G.R. Sánchez, Modelling forest fire spread using hexagonal cellular automata, Applied Mathematics Modelling 31(6) (2007), 1213 – 1227, DOI: 10.1016/j.apm.2006.04.001.

J. Kari, Reversibility of 2D cellular automata is undecidable, Physica D: Nonlinear Phenomena 45(1-3) (1990), 379 – 385, DOI: 10.1016/0167-2789(90)90195-U.

A.R. Khan, P.P. Choudhury, K. Dihidar, S. Mitra and P. Sarkar, VLSI architecture of a cellular automata machine, Computers & Mathematics with Applications 33(5) (1997), 79 – 94, DOI: 10.1016/S0898-1221(97)00021-7.

J.N. Mordeson and D.S. Malik, Fuzzy Automata and Languages: Theory and Applications, 1st edition, Chapman and Hall/CRC, New York, pp. 576 (2002), DOI: 10.1201/9781420035643.

K. Morita, M. Margenstern and K. Imai, Universality of reversible hexagonal cellular automata, RAIRO – Theoretical Informatics and Applications 33(6) (1999), 535 – 550, DOI: 10.1051/ita:1999131.

J. von Neumann, The Theory of Self-reproducting Automata, completed and edited by A.W. Burks, University of Illinois Press, Urbana — London (1966), URL: https://cba.mit.edu/events/03.11.ASE/docs/VonNeumann.pdf.

E.S. Santos, Maximin automata,Information Control 13(1986), 363 – 377, DOI: 10.1016/S0019-9958(68)90864-4.

I. Siap, H. Akin and S. Uguz, Structure and reversibility of 2D hexagonal cellular automata, Computers and Mathematics with Applications 62(11) (2011), 4161 – 4160, DOI: 10.1016/j.camwa.2011.09.066.

F. Steimann and K.-P. Adlassnig, Clinical monitoring with fuzzy automata, Fuzzy Sets and Systems 61(1) (1994), 37 – 42, DOI: 10.1016/0165-0114(94)90282-8.

G.A. Trunfio, Predicting wildfire spreading through a hexagonal cellular automata model, in: P.M.A. Sloot, B. Chopard and A.G. Hoekstra (eds.), Cellular Automata (ACRI2004), Lecture Notes in Computer Science, Vol. 3305, Springer, Berlin — Heidelberg (2004), DOI: 10.1007/978-3-540-30479-1_40.

W.G. Wee, On Generalizations of Adaptive Algorithm and Application of the Fuzzy Sets Concept to Pattern Classification, Ph.D. Thesis, Purdue University (1967).

S. Wolfram, Statistical mechanics of cellular automata, Reviews of Modern Physics 55(3) (1983), 601 – 644, DOI: 10.1103/RevModPhys.55.601.

L.A. Zadeh, Fuzzy sets, Information and Control 8(3) (1965), 338 – 353, DOI: 10.1016/S0019-9958(65)90241-X.

Downloads

Published

23-05-2022
CITATION

How to Cite

Rajasekar, M., Jacob, L. S., & Anbu, R. (2022). 2D Hexagonal Finite Fuzzy Cellular Automata. Communications in Mathematics and Applications, 13(1), 171–181. https://doi.org/10.26713/cma.v13i1.1696

Issue

Section

Research Article