Almost \((\alpha/\eta)\)-\(\psi_\Gamma\)-Contraction in Induced Fuzzy Metric Space and Application to Fredholm Integral Equations

Authors

DOI:

https://doi.org/10.26713/cma.v13i1.1685

Keywords:

Almost \((\alpha/\eta)\)-\(\psi_\Gamma\)-contraction, Induced fuzzy metric space, Fredholm integral equation.

Abstract

 In this paper, we established a new class of almost \((\alpha/\eta)\)-\(\psi_\Gamma\)-contraction mapping in induced fuzzy metric space (FMS) and then proved the results for existence of fixed point theorem (FPT) for multi-valued mappings (MVMs) on the collection of non-empty closed subsets. In application, we prove the existence theorem for Fredholm integral inclusion (FII). An illustrative example also introduced in support of our main result.

Downloads

Download data is not yet available.

References

M.S. Abdullahi and A. Azam, L-fuzzy fixed point theorems for L-fuzzy mappings via βFL-admissible with applications, Journal of Uncertainty Analysis and Applications 5 (2017), Article number: 2 (2017), DOI: 10.1186/s40467-017-0056-5.

A.E. Al-Mazrooei and J. Ahmad, Fuzzy fixed point results of generalized almost F-contraction, Journal of Mathematics and Computer Science 18(2) (2018), 206 – 215, DOI: 10.22436/jmcs.018.02.08.

S.A. Al-Mezel and J. Ahmad, Generalized fixed point results for almost (α,Fσ)-contraction with applications to Fredholm Integral Inclusions, Symmetry 11(9) (2019), 1068, DOI: 10.3390/sym11091068.

S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae 3(1) (1922), 133 – 181, URL: https://eudml.org/doc/213289.

M. Berinde and V. Berinde, On a general class of multi-valued weakly Picard mappings, Journal of Mathematical Analysis and Applications 326(2) (2007), 772 – 782, DOI: 10.1016/j.jmaa.2006.03.016.

S.S. Chauhan, M. Imdad, G. Kaur and A. Sharma, Some fixed point theorems for SF -contraction in complete fuzzy metric spaces, Afrika Matematika 30 (2019), 651 – 662, DOI: 10.1007/s13370-019-00673-4.

J.G. García, S. Romaguera and M. Sanchis, An identification theorem for the completion of the Hausdorff fuzzy metric, Fuzzy Sets and Systems 227 (2013), 96 – 106, DOI: 10.1016/j.fss.2013.04.012.

A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Set Systems 64(3) (1994), 395 – 439, DOI: 10.1016/0165-0114(94)90162-7.

M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 27(3) (1988), 385 – 389, DOI: 10.1016/0165-0114(88)90064-4.

V. Gregori and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 125(2) (2002), 245 – 253, DOI: 10.1016/S0165-0114(00)00088-9.

M. Gregori and S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy Sets and Systems 115(3) (2000), 485 – 489, DOI: 10.1016/S0165-0114(98)00281-4.

V. Gregori, S. Morillas and A. Sapena, Examples of fuzzy metrics and applications, Fuzzy Sets and Systems 170(1) (2011), 95 – 111, DOI: 10.1016/j.fss.2010.10.019.

N. Hussain, A. Latif and I. Iqbal, Fixed point results for generalized F-contractions in moduler metric and fuzzy metric spaces, Fixed Point Theory and Applications 2015 (2015), Article number: 158, DOI: 10.1186/s13663-015-0407-1.

N. Hussain, P. Salimi and A. Latif, Fixed point results for single and set-valued α-η-ψ-contractive mappings, Fixed Point Theory and Applications 2013 (2013), Article number: 212, DOI: 10.1186/1687-1812-2013-212.

I. Kramosil and J. Michálek, Fuzzy metrics and statistical metric spaces, Kybernetika 11 (1975), 326 – 334, URL: https://www.kybernetika.cz/content/1975/5/336/paper.pdf.

S. Kutukch, S. Sharma and H. Tokgoz, A fixed point theorem in fuzzy metric space, International Journal of Mathematical Analysis 1(18) (2007), 861 – 872.

Y. Liu and Z. Li, Coincidence point theorems in probabilistic and fuzzy metric spaces, Fuzzy Sets and Systems 158(1) (2007), 58 – 70, DOI: 10.1016/j.fss.2006.07.010.

D. Mihe¸t, A class of contractions in fuzzy metric spaces, Fuzzy Sets and Systems 161(8) (2010), 1131 – 1137, DOI: 10.1016/j.fss.2009.09.018.

D. Mihe¸t, Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems 159(6) (2008), 739 – 744, DOI: 10.1016/j.fss.2007.07.006.

S.B. Nadler (Jr.), Multi-valued contraction mappings, Pacific Journal of Mathematics 30 (1969), 475 – 488, URL: https://msp.org/pjm/1969/30-2/pjm-v30-n2-p12-s.pdf.

M. Nazam, M. Arsad and M. Postolach, Coincidence and common fixed point theorems for four mappings satisfying (αs,F)-contraction, Nonlinear Analysis and Model Control 23(5) (2018), 664 – 690, DOI: 10.15388/NA.2018.5.3.

S. Phiangsungnoen, Y.J. Cho and P. Kumam, Fixed point results for modified various contractions in fuzzy metric spaces via α-admissiable, Filomat 30(7) (2016), 1869 – 1881, DOI: 10.2298/FIL1607869P.

S. Phiangsungnoen, P. Thounthong and P. Kumam, Fixed point results in fuzzy metric spaces via α and βk admissible mappings with application to integral types, Journal of Intelligent & Fuzzy Systems 34(1) (2018), 467 – 475, DOI: 10.3233/JIFS-17350.

V. Popa, A general fixed point theorem for weakly compatible mappings in compact metric spaces, Turkish Journal of Mathematics 25 (2001), 465 – 474, URL: https://dergipark.org.tr/en/download/article-file/127661.

J. Rodríguez-López and S. Romaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems 147(2) (2004), 273 – 283, DOI: 10.1016/j.fss.2003.09.007.

A. Roldán, J. Martínez-Moreno, C. Roldán and Y.J. Cho, Multidimensional coincidence point results for compatible mappings in partial order fuzzy metric space, Fuzzy Sets and Systems 251 (2014), 71 – 82, DOI: 10.1016/j.fss.2013.10.009.

I.A. Rus and A. Sîntam˘ arian, Data dependence of the fixed point set of some multivalued weakly Picard operators, Nonlinear Analysis: Theory, Methods & Applications 52(8) (2003), 1947 – 1959, DOI: 10.1016/S0362-546X(02)00288-2.

R.K. Saini, B. Singh and A. Jain, A fixed point theorem with implicit relations in fuzzy metric space, International Mathematical Forum 5 (2010), 2485 – 2496.

B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Analysis: Theory, Methods & Applications 75(4) (2012), 2154 – 2165, DOI: 10.1016/j.na.2011.10.014.

B. Schweizer and A. Sklar, Statistical metric spaces, Pacific Journal of Mathematics 10(1) (1960), 313 – 334, URL: https://projecteuclid.org/journals/pacific-journal-of-mathematics/volume-10/issue-1/Statistical-metric-spaces/pjm/1103038644.full.

M.S. Sezen, Fixed point theorems for new type contractive mappings, Journal of Functional Spaces 2019 (2019), Article ID 2153563, DOI: 10.1155/2019/2153563.

M. Sgroi and C. Vetro, Multi-valued F-contractions and solution of certain functional and integral equations, Filomat 27(7) (2013), 1259 – 1268, DOI: 10.2298/FIL1307259S.

D. Wardowaski, Fixed points for new type of contractive mappings in complete metric spaces, Fixed Point Theory and Applications 2012 (2012), Article number: 94, DOI: 10.1186/1687-1812-2012-94.

L.A. Zadeh, Fuzzy sets, Information and Control 8(3) (1965), 338 –353, DOI: 10.1016/S0019-9958(65)90241-X.

Downloads

Published

24-05-2022
CITATION

How to Cite

Saini, R. K., & Kushwaha, M. K. (2022). Almost \((\alpha/\eta)\)-\(\psi_\Gamma\)-Contraction in Induced Fuzzy Metric Space and Application to Fredholm Integral Equations. Communications in Mathematics and Applications, 13(1), 235–252. https://doi.org/10.26713/cma.v13i1.1685

Issue

Section

Research Article