On Two Classes of Exponential Diophantine Equations
DOI:
https://doi.org/10.26713/cma.v13i1.1676Keywords:
Catalan's conjecture, Exponential Diophantine equations, Integer solutionsAbstract
In this paper, we study on the exponential Diophantine equations: \(n^{x}+24^{y}=z^{2}\), for \(n \equiv 5\) or 7 (mod 8). We show that \(5^{x}+24^{y}=z^{2}\) has a unique positive integral solution \((2,1,7)\). Further, we show that for \(k \in \mathbb{N}\), \((8k+5)^{x}+24^{y}=z^{2}\) has a unique solution \((0,1,5)\) in non-negative integers. We also show that for a perfect square \(8m\), the exponential Diophantine equation \((8m-1)^{x}+24^{y}=z^{2}\), \(m \in \mathbb{N}\) has exactly two non-negative integral solutions \((0,1,5)\) and \((1,0,\sqrt{8m})\). Otherwise, it has a unique solution \((0,1,5)\). Finally, we illustrate our results with some examples and non-examples.
Downloads
References
D. Acu, On a Diophantine equation, General Mathematics 15 (2007), 145 – 148, URL: https://www.emis.de/journals/GM/vol15nr4/acu/acu.pdf.
S. Aggarwal, On the exponential Diophantine equation (22m+1 -1)+(13)n = z2, Engineering and Applied Science Letter 4(1) (2021), 77 – 79, DOI: 10.30538/psrp-eas12021.0064.
S.A. Arif and F.S.A. Muriefah, On the Diophantine equation x 2 + q2k+1 = yn, Journal of Number Theory 95 (2002), 95 – 100, DOI: 10.1006/jnth.2001.2750.
F. Beukers, The Diophantine equation Axp +B yq +Czr, Duke Mathematical Journal 91(1) (1998), 61 – 88, DOI: 10.1215/S0012-7094-98-09105-0.
J.J. Bravo and F. Luca, On the Diophantine equation Fn + Fm = 2 a, Quaestiones Mathematiae 39(3) (2016), 391 – 400, DOI: 10.2989/16073606.2015.1070377.
N. Burshtein, On the Diophantine equation 22x+1+7y = z2, Annals of Pure and Applied Mathematics 16(1) (2018), 177 – 179, DOI: 10.22457/apam.v16n1a19.
D.M. Burton, Elementary Number Theory, 6th edition, McGraw-Hill Education (2007), URL: https://books.google.co.in/books?hl=en&lr=&id=XMQjuoTqqRMC&oi=fnd&pg=PR9&dq=D.+M.+Burton.
Z. Cao, A note on the Diophantine equation a x + ny = cz, Acta Arthmetica XCI(1) (1999), 85 – 93, URL: http://matwbn.icm.edu.pl/ksiazki/aa/aa91/aa9115.pdf.
J. Cassels, A Diophantine equation, Glasgow Mathematical Journal 27 (1985), 11 – 18, DOI: 10.1017/S0017089500006030.
E. Catalan, Note extraite d’une lettre adressée à l’éditeur par Mr. E. Catalan, Répétiteur à l’école polytechnique de Paris, Journal für die reine und angewandte Mathematik 1844(27) (1844), p. 192, DOI: 10.1515/crll.1844.27.192.
K. Chakraborty, A. Hoque and K. Srinivas, On the Diophantine equation cx2 + p2m = 4yn, Results in Mathematics 76 (2021), Article number: 57, 10.1007/s00025-021-01366-w.
J.H.E. Cohn, On the Diophantine system x 2 -6y2 = -5, x = 2z 2 -1, Mathematica Scandinavica 82(2) (1998), 161 – 164, DOI: 10.7146/math.scand.a-13830.
J.H.E. Cohn, The Diophantine equation x2 +C = yn, Acta Arithmetica LXV(4) (1993), 387 – 381, URL: http://matwbn.icm.edu.pl/ksiazki/aa/aa65/aa6546.pdf.
W.S. Gayo and J.B. Bacan, On the Diophantine equation Mxp +(Mq +1)y = z2, European Journal of Pure and Applied Mathematics 14(2) (2021), 396 – 403, DOI: 10.29020/nybg.ejpam.v14i2.3948.
L. Hajdu and L. Szalay, On the Diophantine equations (2n -1)(6n -1) = x 2 and (an -1)(akn -1) = x2, Periodica Mathematica Hungarica 40 (2000), 141 – 145, DOI: 10.1023/A:1010335509489.
K. Ishii, On the exponential Diophantine equation (a x -1)(bn -1) = x2, Publicationes Mathematicae Debrecen 89(1-2) (2016), 253 – 256, URL: https://publi.math.unideb.hu/load_jpg.php?p=2098.
R. Keskin, A note on exponential Diophantine equation (a n - 1)(bn - 1) = x2, Proceedings - Mathematical Sciences 129 (2019), Article number 69, DOI: 10.1007/s12044-019-0520-x.
H. Kishan, M. Ravi and S. Sarita, On the Diophantine equation, Journal of Advances in Mathematics 11(9) (2016), DOI: 10.24297/jam.v11i9.815.
J. Klaska, Real-world applications of Number theory, South Bohemia Mathematical Letters 25(1) (2017), 39 – 47, URL: http://home.pf.jcu.cz/~sbml/wp-content/uploads/Klaska.pdf.
S. Kumar, S. Gupta and H. Kishan, On the Non-linear Diophantine equation 61x + 67y = z2 and 67x + 73y = z2, Annals of Pure and Applied Mathematics 18(1) (2018), 91 – 94, DOI: 10.22457/apam.v18n1a13.
M. Le (Zhanjiang), A note on the Diophantine equation x2 + by = cz, Acta Arithmetica LXXI(3) (1995), 253 – 257, URL: http://matwbn.icm.edu.pl/ksiazki/aa/aa71/aa7134.pdf.
F. Luca, On a Diophantine equation, Bulletin of the Australian Mathematical Society 61 (2000), 241 – 246, DOI: 10.1017/S0004972700022231.
P. Mihailescu, Primary cycolotomic units and a proof of Catalan’s conjecture, Journal für die reine und angewandte Mathematik 27 (2004), 167 – 195, DOI: 10.1515/crll.2004.048.
J.F.T. Rabago, On two Diophantine equations 3x +19y = z2 and 3x +91y = z2, International Journal of Mathematics and Scientific Computing 3(1) (2013), 28 – 29, URL: https://www.veltech.edu.in/wpcontent/uploads/2016/04/Paper-08-13.pdf.
M. Somanath, K. Raja, J. Kannan and A. Akila, Integral solutions of an infinite elliptic cone x2 = 9y2 +11z2, Advances and Applications in Mathematical Sciences 19(11) (2020), 1119 – 1124.
M. Somanath, K. Raja, J. Kannan and S. Nivetha, Exponential Diophantine equation in three unknowns, Advances and Applications in Mathematical Sciences 19(11) (2020), 1113 – 1118. [27] B. Sroysang, On the Diophantine equation 7x +8y = z2, International Journal of Pure and Applied Mathematics 84(1) (2013), 111 – 114, DOI: 10.12732/ijpam.v84i1.8.
B. Sury, On the Diophantine equation x2 + 2 = yn, Archiv der Mathemctik 74 (2000), 350 – 355, DOI: 10.1007/s000130050454.
A. Suvarnamani, Solution of the Diophantine equation px + qy = z2, International Journal of Pure and Applied Mathematics 94(4) (2014), 457 – 460, DOI: 10.12732/ijpam.v94i4.1.
A. Suvarnamani, A. Singta and S. Chotchaisthit, On two Diophantine equations 4x + yy = z 2 and 4 x +11y = z2, Science and Technology RMUTT Journal 1(1) (2011), 25 – 28.
N. Terai, The Diophantine equation a x + by = cz, Proceedings of the Japan Academy, Series A, Mathematical Sciences 70(1) (1994), 22 – 26, DOI: 10.3792/pjaa.70.22.
P.G. Walsh, On Diophantine equation of the form, Tatra Mountains Mathematical Publications 20(1) (2000), 87 – 89.
P. Yuan and Y. Hu, On the Diophantine equation x2 +Dm = pn, Journal of Number Theory 111(1) (2005), 144 – 153, DOI: 10.1016/j.jnt.2004.11.005.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.