The Combination of Bernstein Polynomials with Positive Functions Based on a Positive Parameter s

Authors

DOI:

https://doi.org/10.26713/cma.v13i3.1619

Keywords:

Bernstein polynomials, Modulus of smoothness, Quantitative Voronovskaja, Grüss-Voronovskaja

Abstract

This paper deals with a sequence of the combination of Bernstein polynomials with a positive function τ and based on a parameter s>12. These polynomials have preserved the functions 1 and τ. First, the convergence theorem for this sequence is studied for a function fC[0,1]. Next, the rate of convergence theorem for these polynomials is descript by using the first, second modulus of continuous and Ditzian-Totik modulus of smoothness. Also, the Quantitative Voronovskaja and Gruss-Voronovskaja are obtained. Finally, two numerical examples are given for these polynomials by chosen a test function fC[0,1] and two functions for τ to show that the effect of the different values of s and the different chosen functions τ.

Downloads

References

S. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités, Communications of the Kharkov Mathematical Society XIII (1912-13), 1 – 2, URL: http://nonagon.org/ExLibris/bernsteins-demonstration-du-theoreme-de-Weierstrass.

Z. Ditzian and V. Totik, Moduli of Smoothness, Springer Series in Computational Mathematics, Vol. 9, Springer, New York, NY (1987), DOI: 10.1007/978-1-4612-4778-4.

S. G. Gal and H. Gonska, Grüss and Grüss-Voronovskaya-type estimates for some Bernstein-type polynomials of real and complex variables, Jaen Journal on Approximation 7(1) (2015), 97 – 122, URL: http://www.ujaen.es/revista/jja/pdf/pre/jja-0007-01-15-4.pdf.

H. Gonska, P. Pi¸tul and I. Ra¸sa, General King-type operators, Results in Mathematics 53(3-4) (2009), 279 – 286, DOI: 10.1007/s00025-008-0338-9.

J. P. King, Positive linear operators which preserve (x^2), Acta Mathematica Hungarica 99(3) (2003), 203 – 208, DOI: 10.1023/a:1024571126455.

P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publishing Corp., Delhi, India (1960).

S. A. Mohiuddine, T. Acar and M. A. Alghamdi, Genuine modified Bernstein-Durrmeyer operators, Journal of Inequalities and Applications 2018 (2018), Article number: 104, DOI: 10.1186/s13660-018-1693-z.

G. Moldovan, On certain operators of Bernstein type (Romanian), Studia Universitatis Babes,-Bolyai Mathematica-Physica 14(2) (1969), 59 – 64, URL: http://www.cs.ubbcluj.ro/~studia-m/old_issues/subbmath_1969_14_02.pdf.

A. Pallini, Bernstein-type approximation of smooth functions, Statistica 65(2) (2005), 169 – 191, DOI: 10.6092/issn.1973-2201/84.

H. M. Srivastava, F. Özger and S. A. Mohiuddine, Construction of stancu-type Bernstein operators based on Bézier Bases with shape parameter λ, Symmetry 361 (2019), 11, DOI: 10.3390/sym11030316.

E. Voronovaskaja, Détermination de la forme asymptotique d’approximation des functions par les polynômes de S.N. Bernstein, C.R. Acad. Sci., USSR (1932), 79 – 85.

Downloads

Published

25-12-2022
CITATION

How to Cite

Mohammad, A. J., & Kathem, R. F. (2022). The Combination of Bernstein Polynomials with Positive Functions Based on a Positive Parameter s. Communications in Mathematics and Applications, 13(3), 1237–1247. https://doi.org/10.26713/cma.v13i3.1619

Issue

Section

Research Article