The Combination of Bernstein Polynomials with Positive Functions Based on a Positive Parameter \(s\)

Authors

DOI:

https://doi.org/10.26713/cma.v13i3.1619

Keywords:

Bernstein polynomials, Modulus of smoothness, Quantitative Voronovskaja, Grüss-Voronovskaja

Abstract

This paper deals with a sequence of the combination of Bernstein polynomials with a positive function \(\tau\) and based on a parameter \(s>-\frac{1}{2}\). These polynomials have preserved the functions \(1\) and \(\tau\). First, the convergence theorem for this sequence is studied for a function \(f\in C[0,1]\). Next, the rate of convergence theorem for these polynomials is descript by using the first, second modulus of continuous and Ditzian-Totik modulus of smoothness. Also, the Quantitative Voronovskaja and Gruss-Voronovskaja are obtained. Finally, two numerical examples are given for these polynomials by chosen a test function \(f\in C[0,1]\) and two functions for \(\tau\) to show that the effect of the different values of \(s\) and the different chosen functions \(\tau\).

Downloads

Download data is not yet available.

References

S. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités, Communications of the Kharkov Mathematical Society XIII (1912-13), 1 – 2, URL: http://nonagon.org/ExLibris/bernsteins-demonstration-du-theoreme-de-Weierstrass.

Z. Ditzian and V. Totik, Moduli of Smoothness, Springer Series in Computational Mathematics, Vol. 9, Springer, New York, NY (1987), DOI: 10.1007/978-1-4612-4778-4.

S. G. Gal and H. Gonska, Grüss and Grüss-Voronovskaya-type estimates for some Bernstein-type polynomials of real and complex variables, Jaen Journal on Approximation 7(1) (2015), 97 – 122, URL: http://www.ujaen.es/revista/jja/pdf/pre/jja-0007-01-15-4.pdf.

H. Gonska, P. Pi¸tul and I. Ra¸sa, General King-type operators, Results in Mathematics 53(3-4) (2009), 279 – 286, DOI: 10.1007/s00025-008-0338-9.

J. P. King, Positive linear operators which preserve (x^2), Acta Mathematica Hungarica 99(3) (2003), 203 – 208, DOI: 10.1023/a:1024571126455.

P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publishing Corp., Delhi, India (1960).

S. A. Mohiuddine, T. Acar and M. A. Alghamdi, Genuine modified Bernstein-Durrmeyer operators, Journal of Inequalities and Applications 2018 (2018), Article number: 104, DOI: 10.1186/s13660-018-1693-z.

G. Moldovan, On certain operators of Bernstein type (Romanian), Studia Universitatis Babes,-Bolyai Mathematica-Physica 14(2) (1969), 59 – 64, URL: http://www.cs.ubbcluj.ro/~studia-m/old_issues/subbmath_1969_14_02.pdf.

A. Pallini, Bernstein-type approximation of smooth functions, Statistica 65(2) (2005), 169 – 191, DOI: 10.6092/issn.1973-2201/84.

H. M. Srivastava, F. Özger and S. A. Mohiuddine, Construction of stancu-type Bernstein operators based on Bézier Bases with shape parameter λ, Symmetry 361 (2019), 11, DOI: 10.3390/sym11030316.

E. Voronovaskaja, Détermination de la forme asymptotique d’approximation des functions par les polynômes de S.N. Bernstein, C.R. Acad. Sci., USSR (1932), 79 – 85.

Downloads

Published

25-12-2022
CITATION

How to Cite

Mohammad, A. J., & Kathem, R. F. (2022). The Combination of Bernstein Polynomials with Positive Functions Based on a Positive Parameter \(s\). Communications in Mathematics and Applications, 13(3), 1237–1247. https://doi.org/10.26713/cma.v13i3.1619

Issue

Section

Research Article