Spherical Cubic Bi-Ideals of Gamma Near-Ring

Authors

DOI:

https://doi.org/10.26713/cma.v12i4.1618

Keywords:

Spherical set, Cubic set, Gamma near-ring, Bi-ideal

Abstract

The purpose of the article is to study about spherical cubic sets and spherical cubic bi-ideals
of Gamma near-ring \(\mathcal R\). We define spherical internal and external cubic sets and their properties. We discuss P-order and \(\mathcal R\)-order, P-union, P-intersection, \(\mathcal R\)-union and \(\mathcal R\)-intersection of spherical cubic sets. We define spherical cubic bi-ideals of gamma near-ring \(\mathcal R\) and prove that P-union, P-intersection, \(\mathcal R\)-union and \(\mathcal R\)-intersection of spherical cubic bi-ideals of Gamma near-ring \(\mathcal R\) are also spherical cubic bi-ideals of Gamma near-ring \(\mathcal R\).

Downloads

Download data is not yet available.

References

S. Bhavanari, A note on (Gamma) near-rings, Indian Journal of Mathematics 41 (1999), 427 – 433, URL: http://www.amsallahabad.org/pdf/ijm413.pdf.

V. Chinnadurai and V. Shakila, Spherical fuzzy bi-ideals of gamma near-rings, Advances in Mathematics: Scientific Journal 2277(10) (2020), 7793 – 7802, DOI: 10.37418/amsj.9.10.11.

V. Chinnadurai and V. Shakila, Spherical interval-valued fuzzy bi-ideals of gamma near-rings, Journal of Fuzzy Extension and Applications 4 (2020), 336 – 345, DOI: 10.22105/jfea.2020.259268.1040.

F. K. Gündogdu and C. Kahraman, Spherical fuzzy sets and spherical fuzzy TOPSIS method, Journal of Intelligent and and Fuzzy Systems 36 (2018), 9 – 12, DOI: 10.3233/JIFS-181401.

S. M. Hong, Y. B. Jun and H. S. Kim, Fuzzy ideals in near-rings, Bulletin of the Korean Mathematical Society 35 (1998), 455 – 464, URL: https://www.koreascience.or.kr/article/JAKO199815875833047.page.

C. Jana, T. Senapati, M. Pal and A. B. Saeid, Different types of cubic ideals in BCI-algebras based on fuzzy points, Afrika Matematika 31 (2020), 367 – 381, DOI: 10.1007/s13370-019-00728-6.

Y. B. Jun, Fuzzy ideals in Gamma near-rings, Turkish Journal of Mathematics 22 (1998), 449 – 459, URL: https://dergipark.org.tr/en/pub/tbtkmath/issue/12271/146340.

Y. B. Jun, Fuzzy maximal ideals of Gamma near-rings, Turkish Journal of Mathematics 25(4) (2001), 457 – 463, URL: https://dergipark.org.tr/tr/pub/tbtkmath/issue/12259/146237#article_cite.

Y. B. Jun, C. S. Kim and K. O. Yang, Cubic sets, Annals of Fuzzy Mathematics and Informatics 4(1) (2012), 83 – 98, URL: http://www.afmi.or.kr/papers/2012/Vol-04_No-01/AFMI-4-1(83-98)-J-111023.pdf.

Y. B. Jun, K. J. Lee and M. S. Kang, Cubic structures applied to ideals of BCI-algebras, Computers and Mathematics with Applications 62 (2011), 3334 – 3342, DOI: 10.1016/j.camwa.2011.08.042.

D. Mandal, Characterizations of ¡-semirings by their cubic ideals, International Journal of Mathematical and Computational Sciences 13(6) (2019), 150 – 156, DOI: 10.5281/zenodo.3299445.

N. Meenakumari and T. T. Chelvam, Fuzzy bi-ideals in Gamma near-rings, Journal of Algebra and Discrete Structures 9 (2011), 43 – 52.

A. Rosenfeld, Fuzzy groups, Journal of Mathematical Analysis and Applications 35 (1971), 512 – 517, DOI: 10.1016/0022-247X(71)90199-5.

T. Senapati and K. P. Shum, Cubic implicative ideals of BCK-algebras, Missouri Journal of Mathematical Sciences 29(2) (2017), 125 – 138, DOI: 10.35834/mjms/1513306826.

T. Srinivas and T. Nagaiah, Some results on T-fuzzy ideals of (Gamma)-near-rings, Annals of Fuzzy Mathematics and Informatics 4 (2012), 305 – 319, URL: http://www.afmi.or.kr/papers/2012/Vol-04_No-02/PDF/AFMI-4-2(305-319)-J-111121R1.pdf.

L. A. Zadeh, Fuzzy sets, Inform and Control 8 (1965), 338 – 353, DOI: 10.1016/S0019-9958(65)90241-X.

Downloads

Published

13-12-2021
CITATION

How to Cite

Chinnadurai, V., & Shakila, V. (2021). Spherical Cubic Bi-Ideals of Gamma Near-Ring. Communications in Mathematics and Applications, 12(4), 1025–1044. https://doi.org/10.26713/cma.v12i4.1618

Issue

Section

Research Article