A Numerical Approach for Fredholm Delay Integro Differential Equation

Authors

  • Erkan Cimen Department of Mathematics, Van Yuzuncu Yil University, Van
  • Kubra Enterili Department of Mathematics, Van Yuzuncu Yil University, Van

DOI:

https://doi.org/10.26713/cma.v12i3.1574

Keywords:

Fredholm delay integro differential equation, Finite difference method, Error estimate

Abstract

This paper deal with the initial-value problem for a linear first order Fredholm delay integro differential equation. To solve this problem numerically, a finite difference scheme is presented, which based on the method of integral identities with the use of exponential form basis function. As a result of the error analysis, it is proved that the method is first-order convergent in the discrete maximum norm. Finally, an example is provided that supports the theoretical results.

Downloads

Download data is not yet available.

References

R. Amin, S. Nazir and I. Garcí­a-Magariño, A collocation method for numerical solution of nonlinear delay integro–differential equations for wireless sensor network and internet of things, Sensors 20(7) (2020), DOI: 10.3390/s20071962.

G. M. Amiraliyev, M. E. Durmaz and M. Kudu, Uniform convergence results for singularly perturbed Fredholm integro-differential equation, Journal of Mathematical Analysis 9(6) (2018), 55 – 64, URL: http://www.ilirias.com/jma/repository/docs/JMA9-6-5.pdf.

G. M. Amiraliyev and Y. D. Mamedov, Difference schemes on the uniform mesh for singular perturbed pseudo-parabolic equations, Turkish Journal of Mathematics 19(3) (1995), 207 – 222, URL: https://journals.tubitak.gov.tr/math/issues/mat-95-19-3/pp-207-222.pdf.

G. M. Amiraliyev and B. Yilmaz, Fitted difference method for a singularly perturbed initial value problem, International Journal of Mathematics and Computation 22(1) (2014), 1 – 10, URL: http://www.ceser.in/ceserp/index.php/ijmc/article/view/2587.

O. A. Arqub, M. Al-Smadi and N. Shawagfeh, Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method, Applied Mathematics and Computation 219(17) (2013), 8938 – 8948, DOI: 10.1016/j.amc.2013.03.006.

A. Ayad, Spline approximation for first order Fredholm integro-differential equations, Studia Universitatis Babes-Bolyai – Mathematica 41(3) (1996), 1 – 8, URL: http://www.cs.ubbcluj.ro/~studia-m/old_issues/subbmath_1996_41_03.pdf.

A. Ayad, The numerical solution of first order delay integro-differential equations by spline functions, International Journal of Computer Mathematics 77(1) (2001), 125 – 134, DOI: 10.1080/00207160108805055.

M. M. Bah¸sı, A. K. Bah¸sı, M. í‡evik and M. Sezer, Improved Jacobi matrix method for the numerical solution of Fredholm integro-differential-difference equations, Mathematical Sciences 10 (2016), 83 – 93, DOI: 10.1007/s40096-016-0181-1.

S. H. Behiry and H. Hashish, Wavelet methods for the numerical solution of Fredholm integrodifferential equations, International Journal of Applied Mathematics 11(1) (2002), 27 – 35.

N. Bildik, A. Konuralp and S. Yalçınba¸s, Comparison of Legendre polynomial approximation and variational iteration method for the solutions of general linear Fredholm integrodifferential equations, Computers & Mathematics with Applications 59 (2010), 1909 – 1917, DOI: 10.1016/j.camwa.2009.06.022.

F. Bloom, Asymptotic bounds for solutions to a system of damped integro-differential equations of electromagnetic theory, Journal of Mathematical Analysis and Applications 73(2) (1980), 524 – 542, DOI: 10.1016/0022-247X(80)90297-8.

E. Cimen and K. Enterili, An alternative method for numerical solution of Fredholm integro differential equation, Erzincan University Journal of Science and Technology (Erzincan íœniversitesi Fen Bilimleri Enstitüsü Dergisi) 13(1) (2020), 46 – 53 (in Turksih), DOI: 10.18185/erzifbed.633899.

J. M. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics, Springer-Verlag, New York (1992), URL: https://www.springer.com/gp/book/9783540084495.

L. K. Forbes, S. Crozier and D. M. Doddrell, Calculating current densities and fields produced by shielded magnetic resonance imaging probes, SIAM Journal on Applied Mathematics 57(2) (1997), 401 – 425, DOI: 10.1137/S0036139995283110.

L. A. Garey and C. J. Gladwin, Direct numerical methods for first order Fredholm integrodifferential equations, International Journal of Computer Mathematics 34(3–4) (1990), 237 – 246, DOI: 10.1080/00207169008803880.

K. Holmaker, Global asymptotic stability for a stationary solution of a system of integro-differential equations describing the formation of liver zones, SIAM Journal on Mathematical Analysis 24(1) (1993), 116 – 128, DOI: 10.1137/0524008.

S. M. Hosseini and S. Shahmorad, Tau numerical solution of Fredholm integro-differential equations with arbitrary polynomial bases, Applied Mathematical Modelling 27(2) (2003), 145 – 154, DOI: 10.1016/S0307-904X(02)00099-9.

A. Jerri, Introduction to Integral Equations with Applications, Wiley, New York (1999).

R. P. Kanwal, Linear Integral Differential Equations Theory and Technique, Academic Press, New York (1971), URL: https://www.springer.com/gp/book/9781461460114.

V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publisher, Netherlands (1999), URL: https://www.springer.com/gp/book/9780792355045.

K. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, San Diego (1993), URL: https://www.elsevier.com/books/delay-differential-equations/kuang/978-0-12-427610-9.

P. Markowich and M. A. Renardy, A nonlinear Volterra integro-differential equation describing the stretching of polymeric liquids, SIAM Journal on Mathematical Analysis 14(1) (1983), 66 – 97, DOI: 10.1137/0514006.

H. Qiya, Interpolation correction for collocation solutions of Fredholm integro-differential equations, Mathematics of Computation 67(223) (1998), 987 – 999, DOI: 10.1090/S0025-5718-98-00956-9.

A. Saadatmandi and M. Dehghan, Numerical solution of the higher-order linear Fredholm integrodifferential-difference equation with variable coefficients, International Journal of Computational Methods 59(8) (2010), 2996 – 3004, DOI: 10.1016/j.camwa.2010.02.018.

S. Shahmorad and M. H. Ostadzad, An operational matrix method for solving delay Fredholm and Volterra integro–differential equations, International Journal of Computational Methods 13(6) (2016), 1650040, 20 pages, DOI: 10.1142/S0219876216500407.

Downloads

Published

30-09-2021
CITATION

How to Cite

Cimen, E., & Enterili, K. (2021). A Numerical Approach for Fredholm Delay Integro Differential Equation. Communications in Mathematics and Applications, 12(3), 619–631. https://doi.org/10.26713/cma.v12i3.1574

Issue

Section

Research Article