Bifurcation of Function in Four Dimensions With Eight Parameters Based on Lyapunov-Schmidt Reduction

Authors

  • Zainab S. Madhi Department of Mathematics, College of Sciences, University of Basrah, Basrah
  • Mudhir A. Abdul Hussain Department of Mathematics, College of Education for Pure Sciences, University of Basrah, Basrah

DOI:

https://doi.org/10.26713/cma.v12i3.1571

Keywords:

Classification of critical points, Caustic set and Lyapunov-Schmidt method

Abstract

In this paper, we investigate the bifurcation-spreading of critical points for a certain smooth function with eight parameters which have codimension 80. In addition, we found five plots of caustic (bifurcation set) corresponding different cases of parameters. Finally, using the method of alternative problems (Lyapunov-Schmidt method) we obtained the bifurcation solution for the equation of sixth order with boundary conditions as applicable.

Downloads

Download data is not yet available.

References

D. P. L. Castrigiano and S. A. Hayes, Catastrophe Theory, 2nd edition, CRC Press (2018).

O. Y. Danilova, Bifurcations of extremals under symmetric and boundary singularities, Trudy Molodykh Uchenykh Mat. Fak. VSU 6 (2001), 44 – 53 (in Russian).

B. M. Darinskii, Y. I. Sapronov and S. L. Tsarev, Bifurcations of extremals of Fredholm functionals, Journal of Mathematical Sciences 145(6) (2007), 5311 – 5453, DOI: 10.1007/s10958-007-0356-2.

E. V. Derunova and Y. I. Sapronov, Application of normalized key functions in a problem of branching of periodic extremals, Russian Mathematics 59(8) (2015), 9 – 18, DOI: 10.3103/S1066369X15080022.

A. V. Gnezdilov, Corner singularities of Fredholm functional, Scientific Journal Proceedings of Vor. State University Series: Physics - Mathematics 1 (2003), 99 – 114.

M. A. A. Hussain, Corner Singularities of Smooth Functions in the Analysis of Bifurcations Balance of the Elastic Beams and Periodic Waves, PhD Thesis, Voronezh University (2005) (in Russian).

M. A. A. Hussain and M. J. Mohammed, Classification of critical points and caustic of the functions of codimensions eight and fifteen, Journal of Karbala University 10(4) (2014), 64 – 77, URL: https://kj.uokerbala.edu.iq/article_100456.html#downloadTab.

H. K. Kadhim, Three-mode bifurcation of extremals in the analysis of bifurcation solutions of sixth order differential equation, Journal of College of Education for Pure Sciences 4 (2014), 149 – 162, URL: https://www.iasj.net/iasj/download/5c0c10a21cf3797d.

H. K. Kadhim and M. A. Abdul Hussain, The analysis of bifurcation solutions of the Camassa-Holm equation by angular singularities, Problemy Analiza – Issues of Analysis 9(27)(1) (2020), 66 – 82, DOI: 10.15393/j3.art.2020.6770.

D. V. Kostin, Initial-boundary value problems for Fuss-Winkler-Zimmermann and Swift-Hohenberg nonlinear equations of 4th order, Matematicki Vesnik 70(1) (2018), 26 – 39, URL: http://www.vesnik.math.rs/vol/mv18103.pdf.

D. V. Kostin, T. I. Kostina and L. V. Stenyuhin, On the existence of extremals of some nonlinear Fredholm operators, Journal of Physics: Conference Series 1203 (2019), 012066, DOI: 10.1088/1742-6596/1203/1/012066.

A. Liapounoff, Sur la stabilité des figures ellipsoí¯dales d'équilibre d'un liquide animé d'un mouvement de rotation, Annales De La Faculté Des Sciences De Toulouse 6(1) (1904), pp. 5 – 116, URL: http://www.numdam.org/item/AFST_1904_2_6_1_5_0.pdf.

J. Montaldi, Singularities Bifurcations and Catastrophes, University of Manchester (2020), URL: https://personalpages.manchester.ac.uk/staff/j.montaldi/SBC-LookInside.pdf.

Yu. I. Sapronov and E. V. Derunova, Bifurcations of critical orbits of SO(2)-invariant Fredholm functionals at critical points with double resonances, Global and Stochastic Analysis 2(1) (2015), URL: http://www.mukpublications.com/resources/gsa4no2.pdf.

E. Schmidt, Zur Theorie der linearen und nichtlinearen Integralgleichungen. III. Teil, íœber die Auflösung der nichtlinearen Integralgleichung und die Verzweigung ihrer Lösungen, Mathematische Annalen 65 (1908), 370 – 399, DOI: 10.1007/BF01456418.

N. Sidorov, B. Loginov, A. Sinitsyn and M Falaleev, Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications, Springer, Vol. 550 (2002), DOI: 10.1007/978-94-017-2122-6.

Downloads

Published

30-09-2021
CITATION

How to Cite

Madhi, Z. S., & Hussain, M. A. A. (2021). Bifurcation of Function in Four Dimensions With Eight Parameters Based on Lyapunov-Schmidt Reduction. Communications in Mathematics and Applications, 12(3), 603–617. https://doi.org/10.26713/cma.v12i3.1571

Issue

Section

Research Article