Transit Index of Subdivision Graphs

Authors

  • K. M. Reshmi Department of Mathematics, Government Engineering College, Kozhikode
  • Raji Pilakkat Department of Mathematics, University of Calicut, Malappuram

DOI:

https://doi.org/10.26713/cma.v12i3.1565

Keywords:

Transit index, Majorized shortest path, Transit decomposition, Subdivision graph

Abstract

The concept of transit of a vertex and transit index of a graph was defined by the authors in their previous work. The transit of a vertex v is "the sum of the lengths of all shortest path with v as an internal vertex” and the transit index of a graph \(G\) is the sum of the transit of all the vertices of it. In this paper, we investigate transit index of sub-division graphs.

Downloads

Download data is not yet available.

References

G. Harary, Graph Theory, Addison Wesley, Reading, Massachusetts (1969).

M. Eliasi, G. Raeisi and B. Taeri, Wiener index of some graph operations, Discrete Applied Mathematics 160 (9), 1333 – 1344, DOI: 10.1016/j.dam.2012.01.014.

O. Melnikov, V. Sarvanov, R. Tyshkevich, V. Yemelichev and I. Zverovich, Exercises in Graph Theory, Springer, Dordrecht (1998), DOI: 10.1007/978-94-017-1514-0.

P. S. Ranjini and V. Lokesha, Eccentric connectivity index, hyper and reverse-Wiener indices of the subdivision graph, General Mathematics Notes 2(2) (2011), 34 – 46.

K. M. Reshmi and R. Pilakkat, Transit index of a graph and its correlation with MON of octane isomers, Advances in Mathematics: Scientific Journal 9(4) (2020), 1825 – 1833, DOI: 10.37418/amsj.9.4.39.

K. M. Reshmi and R. Pilakkat, Transit index of various graph classes, Malaya Journal of Matematik 8(2) (2020), 494 – 498, DOI: 10.26637/MJM0802/0029.

R. Amin and S. M. A. Nayeem, On the F-index and F-coindex of the line graphs of the subdivision graphs, Malaya Journal of Matematik 6(2) (2018), 362 – 368, DOI: 10.26637/MJM0602/0010.

S. Imran, M. K. Siddiqui, M. Imran and M. F. Nadeem, Computing topological indices and polynomials for line graphs, Mathematics 6 (2018), 137, DOI: 10.3390/math6080137.

S. Wagner and H. Wang, Introduction to Chemical Graph Theory, CRC Press, Taylor & Francis Group, Boca Raton, FL (2019), DOI: 10.1201/9780429450532.

Downloads

Published

30-09-2021
CITATION

How to Cite

Reshmi, K. M., & Pilakkat, R. (2021). Transit Index of Subdivision Graphs. Communications in Mathematics and Applications, 12(3), 581–588. https://doi.org/10.26713/cma.v12i3.1565

Issue

Section

Research Article