Studies on Coefficient Estimates and Fekete-Szegö Problem for a Class of Bi-Univalent Functions Associated With \((p,q)\)-Chebyshev Polynomial

Authors

DOI:

https://doi.org/10.26713/cma.v12i3.1556

Keywords:

Analytic functions, Univalent and bi-univalent functions, Coefficient bounds, Fekete- Szego problem, (p, q)-Chebyshev polynomials

Abstract

In this present work, authors studied and investigated the concept of \((p,q)\)-Chebyshev polynomial of second kind for the subclass of analytic bi-univalent function with respect to the subordination. We give an elementary proof to estimate the coefficient bounds for the bi-univalent functions defined in the open unit disk. Also, we included the result of Fekete-Szegö theorem.

Downloads

Download data is not yet available.

References

S. Altikaya and S. Yalcin, The (p; q)-Chebyshev polynomial bounds of a general bi-univalent function class, Bol. Soc. Mat. Mex., 26 (2020), 341-348, doi:10.1007/s40590-019-00246-2.

D. A. Brannan and J. Clunie, Aspects of contemporary complex analysis, Bulletin of the London Mathematical Society, 14, no.4, (1982), 382-383, doi:10.1112/blms/14.4.382.

D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Proceedings of the International Conference on Mathematical Analysis and its Applications, (1985), 53{60

doi:10.1016/B978-0-08-031636-9.50012-7.

K. Dhanalakshmi, D. Kavitha and A. Anbukkarasi, Certain subclasses of bi-univalent functions associated with horadam polynomials, International Journal of Applied Mathe-

matics, 34, no. 1, (2021), 77{90, doi:10.12732/ijam.v34i1.3.

P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenscafeten, 259, Spinger, New York, (1983), https://www.springer.com/it/book/9780387907956.

E.H. Doha, The rst and second kind Chebyshev coecients of the moments of the generalorder derivative of an innitely dierentiable function, Int. J. Comput. Math. 51,(1994),

-35, doi:10.1080/00207169408804263.

P. Filipponi and A.F. Horadam, Derivative sequences of Fibonacci and Lucas polynomials, Appl.Fibonacci Numbers 4,(1991), 99-108, doi:10.1007/978-94-011-3586-3 12.

P. Filipponi, and A.F. Horadam, Second derivative sequences of Fibonacci and Lucas polynomials, Fibonacci Q. 31, (1993), 194204, https://www.fq.math.ca/Scanned/31-3/filipponi.pdf.

C. Kzlates, N. Tuglu and B. ekim, On the (p, q)-Chebyshev polynomials and related polynomials, Mathematics 7, (2019), 112, doi:10.3390/math7020136.

R. Ma and W. Zhang, Several identities involving the Fibonacci numbers and Lucas numbers, Fibonacci Q. 45, (2007), 164170, https://www.mathstat.dal.ca/FQ/Papers1/45-2/quartrong02_2007.pdf.

J.C. Mason, Chebyshev polynomials approximations for the L-membrane eigenvalue problem, SIAM J. Appl. Math., 15, (1967), 172186, doi:10.1137/0115014.

A: Ozko and A. Porsuk, A note for the (p, q)-Fibonacci and Lucas quarternion polynomials, Konuralp J. Math., 5,(2017), 3646, https://dergipark.org.tr/tr/download/article-file/349806.

H. M. Srivastava, S. Altnkaya, and S. Yalin, Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iranian Journal of Science and Technology, Transactions A: Science,(2018), 1-7, doi:10.1007/s40995-018-0647-0.

T. Wang, and W. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications. Bull. Math. Soc. Sci. Math. Roum., 55, (2012), 95103, http://www.jstor.org/stable/43679243.

Downloads

Published

30-09-2021
CITATION

How to Cite

Kavitha, D., & Dhanalakshmi, K. (2021). Studies on Coefficient Estimates and Fekete-Szegö Problem for a Class of Bi-Univalent Functions Associated With \((p,q)\)-Chebyshev Polynomial. Communications in Mathematics and Applications, 12(3), 691–697. https://doi.org/10.26713/cma.v12i3.1556

Issue

Section

Research Article