Strong Open Monophonic Number of a Graph

Authors

  • Eddith Sarah Varghese Department of Mathematics, Loyola College (University of Madras), Chennai
  • D. Antony Xavier Department of Mathematics, Loyola College (University of Madras), Chennai
  • Deepa Mathew Department of Mathematics, Loyola College (University of Madras), Chennai
  • S. Arul Amirtha Raja Department of Mathematics, SRM Institute of Science and Technology, Chennai

DOI:

https://doi.org/10.26713/cma.v12i3.1531

Keywords:

Strong geodetic number, Monophonic set, Monophonic number, Strong open monophonic number

Abstract

For a graph \(G(V,E)\), the strong open monophonic problem is to find a set \(S\subseteq V (G)\) such that each vertex in \(V(G)\) lies on a unique fixed monophonic path between the vertices in \(S\) and the set \(S\) is called the strong open monophonic set. In this paper, we have discussed some results related to strong open monophonic sets and mainly we have the complexity property of strong open monophonic set problem for general graph. Also, some bounds for general graphs are derived. 

Downloads

Download data is not yet available.

References

F. Buckley and F Harary, Distance in Graphs, Addison-Wesley (1990), DOI: 10.21136/CMJ.1976.101401.

F. Buckley, F. Harary and L. V. Quintas, Extremal results on the geodetic number of a graph, Scientia A 2 (1988), 17 – 26.

G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39(1) (2002), 1 – 6, DOI: 10.1002/net.10007.

M. C. Dourado, F. Protti, D. Rautenbach and J. L. Szwarcfiter, Some remarks on the geodetic number of a graph, Discrete Mathematics 310(4) (2010), 832 – 837, DOI: 10.1016/j.disc.2009.09.018.

M. C. Dourado, F. Protti and J. L. Szwarcfiter, Complexity results related to monophonic convexity, Discrete Applied Mathematics 158(12) (2010), 1268 – 1274, DOI: 10.1016/j.dam.2009.11.016.

F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Mathematical and Computer Modelling 17(11) (1993), 89 – 95, DOI: 10.1016/0895-7177(93)90259-2.

J. John and P. A. P. Sudhahar, On the edge monophonic number of a graph, Filomat 26(6) (2012), 1081–1089, URL: https://www.jstor.org/stable/24895813.

P. Manuel, S. Klavžar, A. Xavier, A. Arokiaraj and E. Thomas, Strong geodetic problem in networks: computational complexity and solution for apollonian networks, arXiv:1708.03868 (2017), URL: https://arxiv.org/abs/1708.03868.

P. Manuel, S. Klavžar, A. Xavier, A. Arokiaraj and E. Thomas, Strong geodetic problem in networks, Discussiones Mathematicae Graph Theory 40(1) (2020), 307 – 321, URL: https://www.dmgt.uz.zgora.pl/publish/bbl_view_pdf.php?ID=15953.

I. M. Pelayo, Geodesic Convexity in Graphs, Springer (2013), URL: https://link.springer.com/book/10.1007%2F978-1-4614-8699-2.

A. P. Santhakumaran and M. Mahendran, The open monophonic number of a graph, International Journal of Scientific & Engineering Research 5(2) (2014), 1644 – 1649, DOI: 10.1.1.428.7077.

A. P Santhakumaran, P. Titus and K. Ganesamoorthy, On the monophonic number of a graph, Journal of Applied Mathematics & Informatics 32(1-2) (2014), 255 – 266, DOI: 10.14317/jami.2014.255.

D.A. Xavier, E. Thomas, D. Mathew and S. Theresal, On the strong monophonic number of a graph, International Journal of Engineering and Advanced Technology 9(1) (2019), 1421 – 1425, URL: https://www.ijeat.org/wp-content/uploads/papers/v9i1/A1231109119.pdf.

Downloads

Published

30-09-2021
CITATION

How to Cite

Varghese, E. S., Xavier, D. A., Mathew, D., & Raja, S. A. A. (2021). Strong Open Monophonic Number of a Graph. Communications in Mathematics and Applications, 12(3), 509–518. https://doi.org/10.26713/cma.v12i3.1531

Issue

Section

Research Article