Some Operations of Complex Interval-valued Pythagorean Fuzzy Set and its Application

Authors

  • V. Chinnadurai Department of Mathematics, Annamalai University, Chidambaram
  • S. Thayalan Department of Mathematics, Annamalai University, Chidambaram
  • A. Bobin Department of Mathematics, Annamalai University, Chidambaram

DOI:

https://doi.org/10.26713/cma.v12i3.1525

Keywords:

Complex fuzzy set, Complex interval-valued fuzzy set, Complex Pythagorean fuzzy set, Complex interval-valued Pythagorean fuzzy set

Abstract

In this article, we discuss the notion of the complex interval-valued Pythagorean fuzzy set (CIVPyFS). We present the algebraic operators and aggregation operators of CIVPyFS. A suitable score function for CIVPyFS is developed to rank the alternatives. Finally, two case studies are given. In the first case, we have used CIVPyFWA operator and in the second case CIVPyFWG. Both the results are compared to bring out the effectiveness, reliability and validity of the proposed method.

Downloads

Download data is not yet available.

References

A. S. Alkouri and A. R. Salleh, Complex intuitionistic fuzzy sets, 2nd International Conference on Fundamental and Applied Sciences 1482 (2012), 464 – 470, DOI: 10.1063/1.4757515.

K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87 – 96, DOI: 10.1016/S0165-0114(86)80034-3.

K. Atanassov and G. Gargov, Interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 31 (1989), 343 – 349, DOI: 10.1016/0165-0114(89)90205-4.

V. Chinnadurai, S. Thayalan and A. Bobin, Complex cubic intuitionistic fuzzy set and its decision making, Advances in Mathematics: Scientific Journal 9 (2020), 7933 – 7946, DOI: 10.37418/amsj.9.10.27.

V. Chinnadurai, S. Thayalan and A. Bobin, Complex cubic set and their properties, Advances in Mathematics: Scientific Journal 9 (2020), 1561 – 1567, DOI: 10.37418/amsj.9.4.10.

S. Greenfield, F. Chiclana and S. Dick, Interval-valued complex fuzzy logic, in: Proceedings of the IEEE International Conference on Fuzzy Systems 16 (2016), 2014 – 2019, DOI: 10.1109/FUZZIEEE.2016.7737939.

H. Garg and D. Rani, Complex interval-valued intuitionistic fuzzy sets and their aggregation operators, Fundamenta Informaticae 164 (2019), 61 – 101, DOI: 10.3233/FI-2019-1755.

X. Peng and Y. Yong, Fundamental properties of interval-valued Pythagorean fuzzy aggregation operator, International Journal of Intelligent System 31 (2019), 444 – 487, DOI: 10.1002/int.21790.

D. Ramot, R. Milo, M. Friedman and A. Kandel, Complex fuzzy logic, IEEE Transactions on Fuzzy Systems 11 (2003), 450 – 461, DOI: 10.1109/TFUZZ.2003.814832.

K. Ullah, T. Mahmood, Z. Ali and N. Jan, On some distance measures of complex Pythagorean fuzzy sets and their applications in pattern recognition, Complex & Intelligent Systems 6 (2020), 15 – 27, DOI: 10.1007/s40747-019-0103-6.

R.R. Yager, Pythagorean fuzzy subsets, in: Proceedings of the Joint IFSA World Congress and NAFIPS Annual Meeting 13 (2013), 57 – 61, DOI: 10.1109/IFSA-NAFIPS.2013.6608375.

L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338 – 353, DOI: 10.1016/S0019-9958(65)90241-X.

L.A. Zadeh, The concept of a linguistic and application to approximate reasoning ” I, Information Sciences 8 (1975), 199 – 249, DOI: 10.1016/0020-0255(75)90036-5.

Downloads

Published

30-09-2021
CITATION

How to Cite

Chinnadurai, V., Thayalan, S., & Bobin, A. (2021). Some Operations of Complex Interval-valued Pythagorean Fuzzy Set and its Application. Communications in Mathematics and Applications, 12(3), 483–497. https://doi.org/10.26713/cma.v12i3.1525

Issue

Section

Research Article