On Poly-Euler Polynomials and Arakawa-Kaneko Type Zeta Functions of Parameters \(a,b,c\)

Authors

  • Nestor G. Acala Department of Mathematics, Mindanao State University, Marawi City
  • Roberto B. Corcino Research Institute for Computational Mathematics and Physics (RICMP), Cebu Normal University, Cebu City

DOI:

https://doi.org/10.26713/cma.v12i3.1514

Keywords:

Euler numbers and polynomials, Bernoulli numbers and polynomials, Riemann zeta functions, Arakawa-Kaneko zeta functions, Poly-Euler numbers and polynomials, Poly-Bernoulli numbers and polynomials, Generalized poly-Euler numbers and polynomials

Abstract

In this paper, we investigate a class of generalized poly-Euler polynomials with \(a,b,c\) parameters, a generalization of the classical Euler numbers and polynomials. Various properties of these generalized polynomials are established. We also introduce the Arakawa-Kaneko type zeta functions for the poly-Euler polynomials with \(a,b,c\) parameters and obtain an interpolation formula for the generalization of poly-Euler numbers and polynomials with \(a,b,c\) parameters. Furthermore, we establish the relationship between the Arakawa-Kaneko type zeta functions for generalized poly-Euler polynomials and the Arakawa-Kaneko zeta functions for generalized poly-Bernoulli polynomials defined in [1].

Downloads

Download data is not yet available.

References

N. G. Acala and E. R. M. Aleluya, On generalized Arakawa-Kaneko zeta functions with parameters a,b, c, International Journal of Mathematics and Mathematical Sciences 2020 (2020), Article ID 2041262, 6 pages, DOI: 10.1155/2020/2041262.

T. Arakawa and M. Kaneko, Multiple zeta values, poly-Bernoulli numbers and related zeta functions, Nagoya Mathematical Journal 153 (1999), 189 – 209, https://www2.math.kyushuu.ac.jp/~mkaneko/papers/18MZV_pB_Nagoya.pdf.

T. Arakawa and M. Kaneko, On poly-Bernoulli numbers, Commentarii Mathematici Universitatis Sancti Pauli. Rikkyo University (St. Paul's University) 48 (1999), 159 – 167, https://www2.math.kyushu-u.ac.jp/~mkaneko/papers/pb2.pdf.

A. Bayad and Y. Hamahata, Polylogarithms and poly-Bernoulli polynomials, Kyushu Journal of Mathematics 65 (2011), 15 – 24, DOI: 10.2206/kyushujm.65.15.

L. Carlitz, Degenerate Stirling, Bernoulli, and Eulerian numbers, Utilitas Mathematica 15 (1979), 51 – 58.

L. Comtet, Advanced Combinatorics, D. Reidel Publishing Company (1974).

M.-A. Coppo and B. Candelpergher, The Arakawa-Kaneko zeta function, The Ramanujan Journal 22(2010), 153 – 162, DOI: 10.1007/s11139-009-9205-x.

R. B. Corcino, C. B. Corcino, J. M. Ontolan and H. Jolany, Some identities on the generalized poly-Euler and poly-Bernoulli polynomials, Matimyas Matimatika 39 (2) (2016), 43 – 58, URL: http://mathsociety.ph/matimyas/images/vol39/Corcino.pdf.

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd edition, Addison-Wesley, Reading, MA (1994), https://www.csie.ntu.edu.tw/~r97002/temp/Concrete%20Mathematics%202e.pdf.

Y. Hamahata, Poly-Euler polynomials and Arakawa-Kaneko type zeta functions, Functiones et Approximatio Commentarii Mathematici 51(1) (2014), 7 – 22, DOI: 10.7169/facm/2014.51.1.1.

H. Jolany, M. R. Darafsheh and R. E. Alikelaye, Generalizations of poly-Bernoulli numbers and polynomials, International Journal of Mathematical Combinatorics 2 (2010), 7 – 14, http://fs.unm.edu/IJMC/GeneralizationsOfPolyBernoulliNumbers.pdf.

H. Jolany and R. Corcino, Explicit formula for the generalization of poly-Bernoulli numbers and polynomials with a,b, c parameters, Journal of Classical Analysis 6 (2015), 119 – 135, DOI: 10.7153/jca-06-10.

M. Kaneko, Poly-Bernoulli numbers, Journal de Théorie des Nombres de Bordeaux 9 (1997), 221 – 228, https://jtnb.centre-mersenne.org/item/JTNB_1997__9_1_221_0/.

Q.-M. Luo, B.-N. Guo, F. Qi and L. Debnath, Generalizations of Bernoulli numbers and polynomials, International Journal of Mathematics and Mathematical Sciences 59 (2003), 3769 – 3776, DOI: 10.1155/S0161171203112070.

Q.-M. Luo, F. Qi and L. Debnath, Generalizations of Euler numbers and polynomials, International Journal of Mathematics and Mathematical Sciences 61 (2003), 3893 – 3901, DOI: 10.1155/S016117120321108X.

Downloads

Published

30-09-2021
CITATION

How to Cite

Acala, N. G., & Corcino, R. B. (2021). On Poly-Euler Polynomials and Arakawa-Kaneko Type Zeta Functions of Parameters \(a,b,c\). Communications in Mathematics and Applications, 12(3), 401–415. https://doi.org/10.26713/cma.v12i3.1514

Issue

Section

Research Article