Automorphism Group of Dihedral Groups With Perfect Order Subsets
DOI:
https://doi.org/10.26713/cma.v12i2.1513Keywords:
Dihedral group, Order classes, Automorphism, Conjugacy classesAbstract
Let \(G\) be a finite group. The set of all possible such orders joint with the number of elements that each order referred to, is called the order classes of \(G\). The order subset of \(G\) determined by \(x\in G\) is the set of elements in \(G\) with the same order as \(x\). A group is said to have perfect order subsets (POS-group) if the cardinality of each order subset divides the group order. In this paper, we compute the order classes of the automorphism group of Dihedral group. Also, we construct a class of POS groups from the automorphism group of the Dihedral group which will serve the solution to the Perfect Order Subset Conjecture.Downloads
References
B. Al-Hasanat, A. Ahmad and H. Sulaiman, Order classes of dihedral groups, AIP Conference Proceedings 1605(1) (2014), 551 – 556, DOI: 10.1063/1.4887648.
S.R. Cavior, The subgroups of the dihedral group, Mathematics Magazine 48(2) (1975), p. 107, DOI: 10.1080/0025570X.1975.11976454.
K. Conrad, Dihedral groups II, URL: https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral2.pdf (accessed: December 2020).
K. Conrad, Dihedral groups, URL: http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/dihedral.pdf (accessed: December 2020).
A.K. Das, On finite groups having perfect order subsets, International Journal of Algebra 3(29) (2009), 629 – 637.
X. Du and W. Shi, Finite groups with conjugacy classes number one greater than its same order classes number, Communications in Algebra 34 (2006), 1345 – 1359, DOI: 10.1080/00927870500454638.
D.S. Dummit and R.M. Foote, Abstract Algebra, Wiley Hoboken (2003).
C.E. Finch and L. Jones, A curious connection between Fermat numbers and finite groups, American Mathematical Monthly 109(6) (2002), 517 – 524, DOI: 10.1080/00029890.2002.11919881.
C.E. Finch and L. Jones, Nonabelian groups with perfect order subsets, JP Journal of Algebra, Number Theory and Application 3(1) (2003), 13 – 26.
R.M. Foote and B.M. Reist, The perfect order subset conjecture for simple groups, Journal of Algebra 391 (2013), 1 – 21, DOI: 10.1016/j.jalgebra.2013.05.029.
J.A. Gallian, Contemporary Abstract Algebra, D.C. Heath and Company (1994).
L. Jones and K. Toppin, On three questions concerning groups with perfect order subsets, Involve, A Journal of Mathematics 4(3) (2012), 251 – 261, DOI: 10.2140/involve.2011.4.251.
S. Libera and P. Tlucek, Some perfect order subset groups, Pi Mu Epsilon Journal 11(9) (2003), 495 – 498, https://www.jstor.org/stable/24340521.
R. Shen, A note on finite groups having perfect order subsets, International Journal of Algebra 4(13-16) (2010), 643 – 646.
N.T. Tuan and B.X. Hai, On perfect order subsets in finite groups, International Journal of Algebra 4(21-24) (2010), 1021 – 1029.
A.V. Vasil'ev, M.A. Grechkoseeva and V.D. Mazuro, Characterization of the finite simple groups by spectrum and order, Algebra and Logic 48(6) (2009), 385 – 409, https://link.springer.com/content/pdf/10.1007/s10469-009-9074-9.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.