Best Proximity Points for Cyclic Contractions in CAT(0) Spaces

Authors

  • Jamnian Nantadilok Department of Mathematics, Lampang Rajabhat University, Lampang
  • Chainarong Khunpanuk Department of Mathematics, Phetchabun Rajabhat University, Phetchabun

DOI:

https://doi.org/10.26713/cma.v12i2.1470

Keywords:

Best proximity point, Cyclic contractions, CAT(0) spaces

Abstract

In this manuscript, we establish best proximity point results for some cyclic contraction maps. We discuss the existence and convergence of best proximity point results for such maps in CAT(0) spaces.

Downloads

Download data is not yet available.

References

A. H. Ansari, J. Nantadilok and M. S. Khan, Best proximity points of generalized cyclic weak (F,psi,varphi)-contractions in ordered metric spaces, Nonlinear Functional Analysis and Applications 25(1) (2020), 55 – 57, DOI: 10.22771/nfaa.2020.25.01.05.

M. Al-Thagafi and N. Shahzad, Convergence and existence results for best proximity points, Nonlinear Analysis: Theory Methods and Applications 70(10) (2009), 3665 – 3671, DOI: 10.1016/j.na.2008.07.022.

M. R. Bridson and A. Häfliger, Metric Spaces of Non-Positive Curvature, Springer, Berlin (1999), URL: http://www.springer.com/978-3-540-64324-1.

K. S. Brown, Buildings, Springer, New York (1989), DOI: 10.1007/978-1-4612-1019-1.

V.W. Bryant, A remark on a fixed point theorem for iterated mappings, The American Mathematical Monthly 75 (1968), 399 – 400, DOI: 10.2307/2313440.

F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Publications Mathématiques de l'Institut des Hautes í‰tudes Scientifiques 41 (1972), 5 – 251 (in French), URL: https://link.springer.com/article/10.1007/BF02715544.

D. Burago, Y. Burago and S. Ivanov, A course in metric geometry, in: Graduate Studies in Mathematics, Vol. 33, American Mathematical Society, Providence (2001), DOI: 10.1090/gsm/033.

S. Dhompongsa, W. A. Kirk and B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces, Journal of Nonlinear and Convex Analysis 8 (2007), 35 – 45, URL: http://www.ybook.co.jp/online2/opjnca/vol8/p35.html.

S. Dhompongsa and B. Panyanak, On Delta-convergence theorems in CAT(0) spaces, Computers & Mathematics with Applications 56(10) (2008), 2572 – 2579, DOI: 10.1016/j.camwa.2008.05.036.

M. De la Sen and E. Karapınar, Some results on best proximity points of cyclic contractions in probabilistic metric spaces, Journal of Function Spaces 2015 (2015), 470574, DOI: 10.1155/2015/470574.

A. A. Eldred and P. Veeramani, Existence and convergence of best proximity points, Journal of Mathematical Analysis and Applications 323(2) (2006), 1001 – 1006, DOI: 10.1016/j.jmaa.2005.10.081.

W. A. Kirk, S. Reich and P. Veeramani, Proximinal retracts and best proximity pair theorems, Numerical Functional Analysis and Optimization 24 (2003), 851 – 862, DOI: 10.1081/NFA-120026380.

W. A. Kirk, P. S. Srinivasan and P. Veeramani, Fixed points for mapping satisfying cyclical contractive conditions, Fixed Point Theory 1(4) (2003), 79 – 89, URL: http://www.math.ubbcluj.ro/~nodeacj/download.php?f=031Kirk.pdf.

E. Karapınar, Fixed point theory for cyclic weak phi-contraction, Applied Mathematics Letters 24 (2011), 822 – 825, DOI: 10.1016/j.aml.2010.12.016.

E. Karapınar and I. M. Erhan, Cyclic contractions and fixed point theorems, Filomat 26(4) (2012), 777 – 782, URL: https://www.jstor.org/stable/24895780.

E. Karapınar, N. Shobkolaei, S. Sedghi and S. M. Vaezpour, A common fixed point theorem for cyclic operators on partial metric spaces, Filomat 26(2) (2012), 407 – 414, URL: https://www.jstor.org/stable/24895740.

S. Karpagam and S. Agrawal, Best proximity point theorems for p-cyclic Meir-Keeler contractions, Fixed Point Theory and Applications 2009 (2009), Article number 197308, DOI: 10.1155/2009/197308.

S. Karpagam and S. Agrawal, Existence of best proximity points for p-cyclic contractions, Fixed Point Theory 13(1) (2012), 99 – 105, URL: http://www.math.ubbcluj.ro/~nodeacj/download.php?f=121Karpagam-final.pdf.

S. Karpagam and B. Zlatanov, Best proximity points of p-cyclic orbital Meir-Keeler contraction maps, Nonlinear Analysis: Modelling and Control 21(6) (2016), 790 – 806, DOI: 10.15388/NA.2016.6.4.

S. Karpagam and B. Zlatanov, A note on best proximity points for p-summing cyclic orbital Meir-Keeler contraction maps, International Journal of Pure and Applied Mathematics 107(1) (2016), 225 – 243, DOI: 10.12732/ijpam.v107i1.17.

W. A. Kirk ad B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Analysis: Theory, Methods & Applications 68(12) (2008), 3689 – 3696, DOI: 10.1016/j.na.2007.04.011.

T. C. Lim, On characterizations of Meir–Keeler contractive maps, Nonlinear Analysis: Theory, Methods & Applications 46 (2001), 113 – 120, DOI: 10.1016/S0362-546X(99)00448-4.

S. Oltra, S. Romaguera and E. A. Sánchez-Pérez, Bicompleting weightable quasi-metric spaces and partial metric spaces, Rendiconti del Circolo Matematico di Palermo 51 (2002), 151 – 162, DOI: 10.1007/BF02871458.

B. Panyanak, Endpoints of multivalued nonexpansive mappings in geodesic spaces, Fixed Point Theory and Applications 2015 (2015), Article number 147, DOI: 10.1186/s13663-015-0398-y.

M. A. Petric and B. Zlatanov, Best proximity points and fixed points for p-summing maps, Fixed Point Theory and Applications 2012 (2012), Article number 86, DOI: 10.1186/1687-1812-2012-86.

M. L. Suresh, T. Gunasekar, S. Karpagam and B. Zlatanov, A study on p-cyclic orbital Geraghty type contractions, International Journal of Engineering and Technology 7(4.10) (2018), 883 – 887, DOI: 10.14419/ijet.v7i4.10.26780.

T. Suzuki, M. Kikkawa and C. Vetro, The existence of best proximity points in metric spaces with property UC, Nonlinear Analysis: Theory, Methods & Applications 71(7-8) (2009), 2918 – 2926, DOI: 10.1016/j.na.2009.01.173.

B. Zlatanov, Best proximity points for p-summing cyclic orbital Meir-Keeler contractions, Nonlinear Analysis: Modelling and Control 20(4), 528 – 544, DOI: 10.15388/NA.2015.4.5.

Downloads

Published

30-06-2021
CITATION

How to Cite

Nantadilok, J., & Khunpanuk, C. (2021). Best Proximity Points for Cyclic Contractions in CAT(0) Spaces. Communications in Mathematics and Applications, 12(2), 231–240. https://doi.org/10.26713/cma.v12i2.1470

Issue

Section

Research Article