Asymmetric Hölder Spaces of Sign Sensitive Weighted Integrable Functions

Authors

  • Miguel A. Jiménez-Pozo Facultad de Ciencias Fí­sico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Ave. San Claudio y 18 Sur, C. U. de San Manuel, Puebla, Pue.72570
  • José M. Hernández-Morales Facultad de Ciencias Fí­sico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Ave. San Claudio y 18 Sur, C. U. de San Manuel, Puebla, Pue.72570

DOI:

https://doi.org/10.26713/cma.v3i1.143

Keywords:

Hölder spaces, Lipschitz functions, Sign-sensitive weights, Weighted integrals, 0-equicontinuous set, Equilipschitzian set, Asymmetric norms

Abstract

We consider the space $L( u,v) $ of $2\pi$-periodic real-valued functions which are integrable with respect to a sign sensitive weight ${(u,v)}$. With some necessary hypothesis for this weight, $L( u,v) $ is an asymmetric Banach space. After defining a convenient modulus of smoothness we introduce the corresponding space $\emph{Lip}_{\alpha}(u,v) $ and its subspace $\emph{lip}_{\alpha }( u,v) $ of Hölder (or Lipschitz) functions associated to this modulus. We prove these spaces are asymmetric Banach spaces too and use the result to study approximation problems.

Downloads

Download data is not yet available.

Downloads

CITATION

How to Cite

Jiménez-Pozo, M. A., & Hernández-Morales, J. M. (2012). Asymmetric Hölder Spaces of Sign Sensitive Weighted Integrable Functions. Communications in Mathematics and Applications, 3(1), 39–50. https://doi.org/10.26713/cma.v3i1.143

Issue

Section

Research Article