Some Results on 2-Vertex Switching in Joints
DOI:
https://doi.org/10.26713/cma.v12i1.1426Keywords:
Switching, 2-vertex self switching, \(SS_2(G)\), \(ss_2(G)\)Abstract
For a finite undirected graph \(G(V,E)\) and a non empty subset \(\sigma\subseteq V\), the switching of \(G\) by \(\sigma\) is defined as the graph \(G^{\sigma}(V,E')\) which is obtained from \(G\) by removing all edges between \(\sigma\) and its complement \(V\)-\(\sigma\) and adding as edges all non-edges between \(\sigma\) and \(V\)-\(\sigma\). For \(\sigma = \{v\}\), we write \(G^{v}\) instead of \(G^{\{v\}}\) and the corresponding switching is called as vertex switching. We also call it as \(|\sigma |\)-vertex switching. When \(|\sigma | = 2\), we call it as 2-vertex switching.\ A subgraph \(B\) of \(G\) which contains \(G[\sigma ]\) is called a joint at \(\sigma\) in \(G\) if \(B\)-\(\sigma\) is connected and maximal. If \(B\) is connected, then we call \(B\) as \(c\)-joint otherwise \(d\)-joint. In this paper, we give a necessary and sufficient condition for a \(c\)-joint \(B\) at \(\sigma = \{u,v\}\) in \(G\) to be a \(c\)-joint and a \(d\)-joint at \(\sigma\) in \(G^{\sigma}\) and also a necessary and sufficient condition for a \(d\)-joint \(B\) at \(\sigma = \{u,v\}\) in \(G\) to be a \(c\)-joint and a \(d\)-joint at \(\sigma\) in \(G^{\sigma}\) when \(uv\in E(G)\) and when \(uv\notin E(G)\).
Downloads
References
Y. Alavi, F. Bucklay, M. Shamula and S. Riuz, Highly irregular m-chromatic graphs, Discrete Mathematics 72(1-3) (1988), 3 – 13, DOI: 10.1016/0012-365X(88)90188-4.
S. Avadayappan and M. Bhuvaneshwari, More results on self Vertex switching, International Journal of Modern Sciences and Engineering Technology 1(3) (2014), 10 – 17, URL: https://nebula.wsimg.com/7d6ce9710b5f85f23acefb895e83abe6?AccessKeyId=D81D660734BCB585516F&disposition=0&alloworigin=1.
D. G. Corneil and R. A. Mathon (editors), Geometry and Combinatorics, Selected Works of J. J. Seidel, Academic Press, Boston (1991), URL: https://books.google.co.in/books?hl=en&lr=&id=brziBQAAQBAJ&oi=fnd&pg=PP1&ots=GpliQTCmZc&sig=YHPYtT_IvtQNsblCbtuUfCbC6C4&redir_esc=y#v=onepage&q&f=false.
C. Jayasekaran, Self vertex switchings of trees, Ars Combinatoria CXXVII (2016), 33 – 43, URL: https://www.researchgate.net/publication/307690970_Self_vertex_switchings_of_trees_Ars_Combinatoria_Vol127_pp33-43.
C. Jayasekaran, Self vertex switchings of disconnected unicyclic graphs, Ars Combinatoria CXXIX (2016), 51 – 62, URL: https://www.researchgate.net/publication/309174937_Self_Vertex_Switchings_of_Disconnected_Unicyclic_Graphs.
V. V. Kamalappan, J. P. Joseph and C. Jayasekaran, Branches and joints in the study of self switching of graphs, Journal of Combinatorial Mathematics and Combinatorial Computing 67 (2008), 111 – 122, URL: https://www.researchgate.net/publication/268636390_Branches_and_joints_in_the_study_of_self_switching_of_graphs.
J. J. Seidel, A survey of two-graphs, in Atti Convegno Internazionale Teorie Combinatorie (Rome, Italy, September 3-15, 1973, Accademia Nazionale dei Lincei), Tomo I, pp. 481 – 511 (1976).
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.