The Proper Elements and Simple Invariant Subspaces

Authors

  • Slaviša V. Djordjević Facultad de Ciencias Fisico-Matematicas, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 1152, Puebla, Pue. CP. 72000

DOI:

https://doi.org/10.26713/cma.v3i1.141

Keywords:

Eigenvalues, Eigenvectors, Invariant subspaces

Abstract

A proper element of $X$ is a triple $(\lambda$, $L$, $A)$ composed by an eigenvalue $\lambda$, an invariant subspace of an operator $A$ in $B(X)$ generated by one eigenvector of $\lambda$ and the operator $A$. For $ (\lambda_0, L_0,A_0)\in Eig (X)$, where $L_0=\mathcal{L} (\{x_0\} )$, the operator $A_0$ induces an operator $\widehat{A_0}$ from the quotient $X/L_0$ into itself, i.e. $\widehat{A_0}(x+L_0)=A_0(x)+L_0$. In paper we show that $\lambda_0$ is a simple pole of $A_0$ if and only if $\lambda_0\notin\sigma (\widehat{A_0})$. Follow this concept we can define simple invariant subspaces of linear operator $T$ like invariant subspace $E$ such that $\sigma (T_E)\cap\sigma (\widehat{T_E})=\emptyset$, where $T_{E}:E\to E$ is the restriction of $T$ on $E$, $\widehat{T_E}$ is the  operator $\widehat{T_E}(\pi (y))=\pi (T(y))$ on the quotient space $X/E$ and $\pi$ is the natural homoeomorphism between $X$ and $X/E$. Also, we give some properties of stability of simple invariant subspaces.

Downloads

Download data is not yet available.

Downloads

CITATION

How to Cite

Djordjević, S. V. (2012). The Proper Elements and Simple Invariant Subspaces. Communications in Mathematics and Applications, 3(1), 17–23. https://doi.org/10.26713/cma.v3i1.141

Issue

Section

Research Article